skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Demonstration of IR absorptive filter using alumina with laser ablated sub-wavelength structure for millimeter-wave alumina filters
Award ID(s):
2206087
PAR ID:
10543544
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Zmuidzinas, Jonas; Gao, Jian-Rong
Publisher / Repository:
SPIE
Date Published:
ISBN:
9781510675278
Page Range / eLocation ID:
135
Format(s):
Medium: X
Location:
Yokohama, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. In situ X-ray diffraction measurements at the Advanced Photon Source show that alpha-Al2O3 and MgAl2O4 react nearly instantaneously and completely, and nearly completely to form single-phase high-alumina spinel during voltage-to-current type of flash sintering experiments. The initial sample was constituted from powders of alpha-Al2O3, MgAl2O4 spinel, and cubic 8 mol% Y2O3-stabilized ZrO2 (8YSZ) mixed in equal volume fractions, the spinel to alumina molar ratio being 1:1.5. Specimen temperature was measured by thermal expansion of the platinum standard. These measurements correlated well with a black-body radiation model, using appropriate values for the emissivity of the constituents. Temperatures of 1600-1736 degrees C were reached during the flash, which promoted the formation of alumina-rich spinel. In a second set of experiments, the flash was induced in a current-rate method where the current flowing through the specimen is controlled and increased at a constant rate. In these experiments, we observed the formation of two different compositions of spinel, MgO center dot 3Al(2)O(3) and MgO center dot 1.5Al(2)O(3), which evolved into a single composition of MgO center dot 2.5Al(2)O(3) as the current continued to increase. In summary, flash sintering is an expedient way to create single-phase, alumina-rich spinel. 
    more » « less
  2. null (Ed.)
    Processing and characterization for zirconia toughened alumina (ZTA) coatings on Ti6Al4V (Ti64) alloy by directed energy deposition (DED)-based additive manufacturing (AM) is presented here. The objective of the study was to achieve a dense ZTA coating with the intent of providing an alternative to fully ceramic implants for articulating surfaces of total hip arthroplasty (THA). Preliminary work resulted in failed samples due to cracking, porosity, and delamination. After careful parameter optimization, a Ti64+5wt.%ZTA (5ZTA) composition produced a metallurgically sound and coherent coating with minimal porosity. Additionally, bulk structures were also feasible with the optimized coating parameters. Characterization of the 5ZTA composition displayed a 27.0% increase in hardness, 25% reduction in normalized wear rate, an increase in contact resistance during in vitro tribological testing along with a faster surface re-passivation post-tribological testing. 
    more » « less