Abstract Alaskan wildfires have major ecological, social, and economic consequences, but associated health impacts remain unexplored. We estimated cardiorespiratory morbidity associated with wildfire smoke (WFS) fine particulate matter with a diameter less than 2.5 μm (PM2.5) in three major population centers (Anchorage, Fairbanks, and the Matanuska‐Susitna Valley) during the 2015–2019 wildfire seasons. To estimate WFS PM2.5, we utilized data from ground‐based monitors and satellite‐based smoke plume estimates. We implemented time‐stratified case‐crossover analyses with single and distributed lag models to estimate the effect of WFS PM2.5on cardiorespiratory emergency department (ED) visits. On the day of exposure to WFS PM2.5, there was an increased odds of asthma‐related ED visits among 15–65 year olds (OR = 1.12, 95% CI = 1.08, 1.16), people >65 years (OR = 1.15, 95% CI = 1.01, 1.31), among Alaska Native people (OR = 1.16, 95% CI = 1.09, 1.23), and in Anchorage (OR = 1.10, 95% CI = 1.05, 1.15) and Fairbanks (OR = 1.12, 95% CI = 1.07, 1.17). There was an increased risk of heart failure related ED visits for Alaska Native people (Lag Day 5 OR = 1.13, 95% CI = 1.02, 1.25). We found evidence that rural populations may delay seeking care. As the frequency and magnitude of Alaskan wildfires continue to increase due to climate change, understanding the health impacts will be imperative. A nuanced understanding of the effects of WFS on specific demographic and geographic groups facilitates data‐driven public health interventions and fire management protocols that address these adverse health effects.
more »
« less
Prescribed fires, smoke exposure, and hospital utilization among heart failure patients
Prescribed fires often have ecological benefits, but their environmental health risks have been infrequently studied. We investigated associations between residing near a prescribed fire, wildfire smoke exposure, and heart failure (HF) patients’ hospital utilization. Methods: We used electronic health records from January 2014 to December 2016 in a North Carolina hospital-based cohort to determine HF diagnoses, primary residence, and hospital utilization. Using a cross-sectional study design, we associated the prescribed fire occurrences within 1, 2, and 5 km of the patients’ primary residence with the number of hospital visits and 7- and 30-day readmissions. To compare prescribed fire associations with those observed for wildfire smoke, we also associated zip code-level smoke density data designed to capture wildfire smoke emissions with hospital utilization amongst HF patients. Quasi-Poisson regression models were used for the number of hospital visits, while zero-inflated Poisson regression models were used for readmissions. All models were adjusted for age, sex, race, and neighborhood socioeconomic status and included an offset for follow-up time. The results are the percent change and the 95% confidence interval (CI). Results: Associations between prescribed fire occurrences and hospital visits were generally null, with the few associations observed being with prescribed fires within 5 and 2 km of the primary residence in the negative direction but not the more restrictive 1 km radius. However, exposure to medium or heavy smoke (primarily from wildfires) at the zip code level was associated with both 7-day (8.5% increase; 95% CI = 1.5%, 16.0%) and 30-day readmissions (5.4%; 95% CI = 2.3%, 8.5%), and to a lesser degree, hospital visits (1.5%; 95% CI: 0.0%, 3.0%) matching previous studies. Conclusions: Area-level smoke exposure driven by wildfires is positively associated with hospital utilization but not proximity to prescribed fires.
more »
« less
- Award ID(s):
- 1751601
- PAR ID:
- 10543743
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Environmental Health
- Volume:
- 22
- Issue:
- 86
- ISSN:
- 1476-069X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background Firefighters have increased cancer incidence and mortality rates compared to the general population, and are exposed to multiple products of combustion including known and suspected carcinogens. Objective The study objective was to quantify fire response exposures by role and self-reported exposure risks. Methods Urinary hydroxylated metabolites of polycyclic aromatic hydrocarbons (PAH-OHs) were measured at baseline and 2–4 h after structural fires and post-fire surveys were collected. Results Baseline urine samples were collected from 242 firefighters. Of these, 141 responded to at least one of 15 structural fires and provided a post-fire urine. Compared with baseline measurements, the mean fold change of post-fire urinary PAH-OHs increased similarly across roles, including captains (2.05 (95% CI 1.59–2.65)), engineers (2.10 (95% CI 1.47–3.05)), firefighters (2.83 (95% CI 2.14–3.71)), and paramedics (1.84 (95% CI 1.33–2.60)). Interior responses, smoke odor on skin, and lack of recent laundering or changing of hoods were significantly associated with increased post-fire urinary PAH-OHs. Significance Ambient smoke from the fire represents an exposure hazard for all individuals on the fireground; engineers and paramedics in particular may not be aware of the extent of their exposure. Post-fire surveys identified specific risks associated with increased exposure.more » « less
-
null (Ed.)Background Prior diagnosis of heart failure (HF) is associated with increased length of hospital stay (LOS) and mortality from COVID-19. Associations between substance use, venous thromboembolism (VTE) or peripheral arterial disease (PAD) and its effects on LOS or mortality in patients with HF hospitalised with COVID-19 remain unknown. Objective This study identified risk factors associated with poor in-hospital outcomes among patients with HF hospitalised with COVID-19. Methods Case–control study was conducted of patients with prior diagnosis of HF hospitalised with COVID-19 at an academic tertiary care centre from 1 January 2020 to 28 February 2021. Patients with HF hospitalised with COVID-19 with risk factors were compared with those without risk factors for clinical characteristics, LOS and mortality. Multivariate regression was conducted to identify multiple predictors of increased LOS and in-hospital mortality in patients with HF hospitalised with COVID-19. Results Total of 211 patients with HF were hospitalised with COVID-19. Women had longer LOS than men (9 days vs 7 days; p<0.001). Compared with patients without PAD or ischaemic stroke, patients with PAD or ischaemic stroke had longer LOS (7 days vs 9 days; p=0.012 and 7 days vs 11 days, p<0.001, respectively). Older patients (aged 65 and above) had increased in-hospital mortality compared with younger patients (adjusted OR: 1.04; 95% CI 1.00 to 1.07; p=0.036). Prior diagnosis of VTE increased mortality more than threefold in patients with HF hospitalised with COVID-19 (adjusted OR: 3.33; 95% CI 1.29 to 8.43; p=0.011). Conclusion Vascular diseases increase LOS and mortality in patients with HF hospitalised with COVID-19.more » « less
-
GrantWilliamson (Ed.)Increasing wildfire activities across the Great Plains has raised concerns about the effectiveness and safety of prescribed fire as a land management tool. This study analyzes wildfire records from 1992 to 2020 to assess spatiotemporal patterns in wildfire risk and evaluate the role of prescribed fires through the combined analysis of wildfire and prescribed fire data. Results show a threefold increase in both wildfire frequency and area burned, with fire size increasing from east to west and frequency rising from north to south. Wildfire seasons are gradually occurring earlier due to climate change. Negative correlation between prescribed fires in spring and wildfires in summer indicated the effectiveness of prescribed fire in mitigating wildfire risk. Drought severity accounted for 51% of the interannual variability in area burned, while grass curing accounted for 60% of monthly variability of wildfires in grasslands. The ratio of wildfire area burned to total area burned (dominated by prescribed fires) declined from over 20% in early March to below 1% by early April. The results will lay a foundation for the development of a localized fire risk assessment tool that integrates various long-term, mid-term, and short-term risk factors, and support more effective fire management in this region.more » « less
-
Abstract Increasing fire activity and the associated degradation in air quality in the United States has been indirectly linked to human activity via climate change. In addition, direct attribution of fires to human activities may provide opportunities for near term smoke mitigation by focusing policy, management, and funding efforts on particular ignition sources. We analyze how fires associated with human ignitions (agricultural fires and human-initiated wildfires) impact fire particulate matter under 2.5µm (PM2.5) concentrations in the contiguous United States (CONUS) from 2003 to 2018. We find that these agricultural and human-initiated wildfires dominate fire PM2.5in both a high fire and human ignition year (2018) and low fire and human ignition year (2003). Smoke from these human levers also makes meaningful contributions to total PM2.5(∼5%–10% in 2003 and 2018). Across CONUS, these two human ignition processes account for more than 80% of the population-weighted exposure and premature deaths associated with fire PM2.5. These findings indicate that a large portion of the smoke exposure and impacts in CONUS are from fires ignited by human activities with large mitigation potential that could be the focus of future management choices and policymaking.more » « less
An official website of the United States government

