skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shell-model study of weak β-decays relevant to astrophysical processes
Shell-model studies on the weak β -decay in nuclei relevant to astrophysical processes are carried out. The β -decay rates, as well as electron-capture rates in the s d - p f shell induced by Gamow–Teller (GT) transition, are evaluated in astrophysical environments. The weak rates for the Urca pair of nuclei with A = 31 in the island of inversion, which are important for the nuclear Urca processes in neutron star crusts, are investigated by shell-model calculations in the s d p f shell. The GT strength is evaluated in the s d p f shell for selected β -decays in the s d -shell nuclei, and the effects of the expansion of the configuration space on the quenching of the axial–vector coupling are examined. β -decay rates induced by first-forbidden (FF) transitions are studied by the Behrens–Bühring (BB) method for the isotones with N = 126 and compared with the Walecka method. The important role of the electron distortions in the β -decays of206Hg and207Tl is pointed out.  more » « less
Award ID(s):
1927130
PAR ID:
10543938
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers in Physics
Date Published:
Journal Name:
Frontiers in Physics
Volume:
12
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> A measurement of theCP-violating parameters in$$ {B}_s^0\boldsymbol{\to}{D}_s^{\mp }{K}^{\pm} $$ B s 0 D s K ± decays is reported, based on the analysis of proton-proton collision data collected by the LHCb experiment corresponding to an integrated luminosity of 6 fb−1at a centre-of-mass energy of 13 TeV. The measured parameters are obtained with a decay-time dependent analysis yieldingCf= 0.791 ± 0.061 ± 0.022,$$ {A}_f^{\Delta \Gamma} $$ A f Γ = −0.051 ± 0.134 ± 0.058,$$ {A}_{\overline{f}}^{\Delta \Gamma} $$ A f ¯ Γ = −0.303 ± 0.125 ± 0.055,Sf= −0.571 ± 0.084 ± 0.023 and$$ {S}_{\overline{f}} $$ S f ¯ = −0.503 ± 0.084 ± 0.025, where the first uncertainty is statistical and the second systematic. This corresponds to CP violation in the interference between mixing and decay of about 8.6σ. Together with the value of the$$ {B}_s^0 $$ B s 0 mixing phase −2βs, these parameters are used to obtain a measurement of the CKM angleγequal to (74 ± 12)° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This result is combined with the previous LHCb measurement in this channel using 3 fb−1resulting in a determination of$$ \gamma ={\left({81}_{-11}^{+12}\right)}^{\circ } $$ γ = 81 11 + 12
    more » « less
  2. Abstract We present measurements of the branching fractions of eight$$ {\overline{B}}^0 $$ B ¯ 0 →D(*)+K$$ {K}_{(S)}^{\left(\ast \right)0} $$ K S 0 ,B→D(*)0K$$ {K}_{(S)}^{\left(\ast \right)0} $$ K S 0 decay channels. The results are based on data from SuperKEKB electron-positron collisions at the Υ(4S) resonance collected with the Belle II detector, corresponding to an integrated luminosity of 362 fb−1. The event yields are extracted from fits to the distributions of the difference between expected and observedBmeson energy, and are efficiency-corrected as a function ofm(K$$ {K}_{(S)}^{\left(\ast \right)0} $$ K S 0 ) andm(D(*)$$ {K}_{(S)}^{\left(\ast \right)0} $$ K S 0 ) in order to avoid dependence on the decay model. These results include the first observation of$$ {\overline{B}}^0 $$ B ¯ 0 →D+K$$ {K}_S^0 $$ K S 0 ,B→D*0K$$ {K}_S^0 $$ K S 0 , and$$ {\overline{B}}^0 $$ B ¯ 0 →D*+K$$ {K}_S^0 $$ K S 0 decays and a significant improvement in the precision of the other channels compared to previous measurements. The helicity-angle distributions and the invariant mass distributions of theK$$ {K}_{(S)}^{\left(\ast \right)0} $$ K S 0 systems are compatible with quasi-two-body decays via a resonant transition with spin-parityJP= 1for theK$$ {K}_S^0 $$ K S 0 systems andJP= 1+for theKK*0systems. We also present measurements of the branching fractions of four$$ {\overline{B}}^0 $$ B ¯ 0 →D(*)+$$ {D}_s^{-} $$ D s ,B→D(*)0$$ {D}_s^{-} $$ D s decay channels with a precision compatible to the current world averages. 
    more » « less
  3. Consider the linear transport equation in 1D under an external confining potential \begin{document}$$ \Phi $$\end{document}: \begin{document}$$ \begin{equation*} {\partial}_t f + v {\partial}_x f - {\partial}_x \Phi {\partial}_v f = 0. \end{equation*} $$\end{document} For \begin{document}$$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $$\end{document} (with \begin{document}$$ \varepsilon >0 $$\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $$\end{document}, with an inverse polynomial decay rate \begin{document}$$ O({\langle} t{\rangle}^{-2}) $$\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $$\end{document}D under the external potential \begin{document}$$ \Phi $$\end{document}$. 
    more » « less
  4. A<sc>bstract</sc> ThepT-differential production cross sections of non-prompt D0, D+, and$$ {\textrm{D}}_{\textrm{s}}^{+} $$ D s + mesons originating from beauty-hadron decays are measured in proton–proton collisions at a centre-of-mass energy$$ \sqrt{s} $$ s = 13 TeV. The measurements are performed at midrapidity, |y|<0.5, with the data sample collected by ALICE from 2016 to 2018. The results are in agreement with predictions from several perturbative QCD calculations. The fragmentation fraction of beauty quarks to strange mesons divided by the one to non-strange mesons,fs/(fu+fd), is found to be 0.114 ± 0.016 (stat.) ± 0.006 (syst.) ± 0.003 (BR) ± 0.003 (extrap.). This value is compatible with previous measurements at lower centre-of-mass energies and in different collision systems in agreement with the assumption of universality of fragmentation functions. In addition, the dependence of the non-prompt D meson production on the centre-of-mass energy is investigated by comparing the results obtained at$$ \sqrt{s} $$ s = 5.02 and 13 TeV, showing a hardening of the non-prompt D-mesonpT-differential production cross section at higher$$ \sqrt{s} $$ s . Finally, the$$ \textrm{b}\overline{\textrm{b}} $$ b b ¯ production cross section per unit of rapidity at midrapidity is calculated from the non-prompt D0, D+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ D s + , and$$ {\Lambda}_{\textrm{c}}^{+} $$ Λ c + hadron measurements, obtaining$$ \textrm{d}\sigma /\textrm{d}y=75.2\pm 3.2\left(\textrm{stat}.\right)\pm 5.2{\left(\textrm{syst}.\right)}_{-3.2}^{+12.3}\left(\textrm{extrap}.\right) $$ d σ / d y = 75.2 ± 3.2 stat . ± 5.2 syst . 3.2 + 12.3 extrap . μb. 
    more » « less
  5. A<sc>bstract</sc> We measureCPasymmetries and branching-fraction ratios forB±→ DK±andDπ±decays withD →$$ {K}_{\textrm{S}}^0 $$ K S 0 K±π, whereDis a superposition ofD0and$$ \overline{D} $$ D ¯ 0. We use the full data set of the Belle experiment, containing 772×106$$ B\overline{B} $$ B B ¯ pairs, and data from the Belle II experiment, containing 387 × 106$$ B\overline{B} $$ B B ¯ pairs, both collected in electron-positron collisions at the Υ(4S) resonance. Our results provide model-independent information on the unitarity triangle angleϕ3
    more » « less