skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UNIWIZ: A Unified Large Language Model Orchestrated Wizard for Safe Knowledge Grounded Conversations
Large Language Models (LLMs) have made significant progress in integrating safety and knowledge alignment. However, adversarial actors can manipulate these models into generating unsafe responses, and excessive safety alignment can lead to unintended hallucinations. To address these challenges, we introduce UniWiz, a novel 2-step data orchestration framework that unifies safety and knowledge data generation. We propose a “safety-priming” method to generate synthetic safety data and overcome safety bottlenecks. We also inject relevant knowledge into conversations by retrieving factual information from curated sources. UniWiz dataset consists of 17,638 quality-controlled conversations and 10,000 augmented preference data. Pretrained models fine-tuned on UniWiz show improvements across various metrics and outperform state-of-the-art instruction-tuned models trained on much larger datasets.  more » « less
Award ID(s):
2214070
PAR ID:
10543965
Author(s) / Creator(s):
;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Page Range / eLocation ID:
1749 to 1762
Format(s):
Medium: X
Location:
Bangkok, Thailand and virtual meeting
Sponsoring Org:
National Science Foundation
More Like this
  1. Large language models (LLMs) are expected to follow in- structions from users and engage in conversations. Tech- niques to enhance LLMs’ instruction-following capabilities typically fine-tune them using data structured according to a predefined chat template. Although chat templates are shown to be effective in optimizing LLM performance, their impact on safety alignment of LLMs has been less understood, which is crucial for deploying LLMs safely at scale. In this paper, we investigate how chat templates affect safety alignment of LLMs. We identify a common vulnerability, named ChatBug, that is introduced by chat templates. Our key insight to identify ChatBug is that the chat templates provide a rigid format that need to be followed by LLMs, but not by users. Hence, a malicious user may not necessar- ily follow the chat template when prompting LLMs. Instead, malicious users could leverage their knowledge of the chat template and accordingly craft their prompts to bypass safety alignments of LLMs. We study two attacks to exploit the ChatBug vulnerability. Additionally, we demonstrate that the success of multiple existing attacks can be attributed to the ChatBug vulnerability. We show that a malicious user can exploit the ChatBug vulnerability of eight state-of-the- art (SOTA) LLMs and effectively elicit unintended responses from these models. Moreover, we show that ChatBug can be exploited by existing jailbreak attacks to enhance their at- tack success rates. We investigate potential countermeasures to ChatBug. Our results show that while adversarial train- ing effectively mitigates the ChatBug vulnerability, the vic- tim model incurs significant performance degradation. These results highlight the trade-off between safety alignment and helpfulness. Developing new methods for instruction tuning to balance this trade-off is an open and critical direction for future research. 
    more » « less
  2. Language models have shown promise in various tasks but can be affected by undesired data during training, fine-tuning, or alignment. For example, if some unsafe conversations are wrongly annotated as safe ones, the model fine-tuned on these samples may be harmful. Therefore, the correctness of annotations, i.e., the credibility of the dataset, is important. This study focuses on the credibility of real-world datasets, including the popular benchmarks Jigsaw Civil Comments, Anthropic Harmless & Red Team, PKU BeaverTails & SafeRLHF, that can be used for training a harmless language model. Given the cost and difficulty of cleaning these datasets by humans, we introduce a systematic framework for evaluating the credibility of datasets, identifying label errors, and evaluating the influence of noisy labels in the curated language data, specifically focusing on unsafe comments and conversation classification. With the framework, we find and fix an average of 6.16% label errors in 11 datasets constructed from the above benchmarks. The data credibility and downstream learning performance can be remarkably improved by directly fixing label errors, indicating the significance of cleaning existing real-world datasets. 
    more » « less
  3. We collected Instagram data from 150 adolescents (ages 13-21) that included 15,547 private message conversations of which 326 conversations were flagged as sexually risky by participants. Based on this data, we leveraged a human-centered machine learning approach to create sexual risk detection classifiers for youth social media conversations. Our Convolutional Neural Network (CNN) and Random Forest models outperformed in identifying sexual risks at the conversation-level (AUC=0.88), and CNN outperformed at the message-level (AUC=0.85). We also trained classifiers to detect the severity risk level (i.e., safe, low, medium-high) of a given message with CNN outperforming other models (AUC=0.88). A feature analysis yielded deeper insights into patterns found within sexually safe versus unsafe conversations. We found that contextual features (e.g., age, gender, and relationship type) and Linguistic Inquiry and Word Count (LIWC) contributed the most for accurately detecting sexual conversations that made youth feel uncomfortable or unsafe. Our analysis provides insights into the important factors and contextual features that enhance automated detection of sexual risks within youths' private conversations. As such, we make valuable contributions to the computational risk detection and adolescent online safety literature through our human-centered approach of collecting and ground truth coding private social media conversations of youth for the purpose of risk classification. 
    more » « less
  4. Harmful fine-tuning attack poses serious safety concerns for large language models’ fine-tuning-as-a-service. While existing defenses have been proposed to mitigate the issue, their performances are still far away from satisfactory, and the root cause of the problem has not been fully recovered. To this end, we in this paper show that harmful perturbation over the model weights could be a probable cause of alignment-broken. In order to attenuate the negative impact of harmful perturbation, we propose an alignment-stage solution, dubbed Booster. Technically, along with the original alignment loss, we append a loss regularizer in the alignment stage’s optimization. The regularizer ensures that the model’s harmful loss reduction after the simulated harmful perturbation is attenuated, thereby mitigating the subsequent fine-tuning risk. Empirical results show that Booster can effectively reduce the harmful score of the fine-tuned models while maintaining the performance of downstream tasks. Our code is available at https://github.com/git-disl/Booster. 
    more » « less
  5. Virtual Mental Health Assistants (VMHAs) are utilized in health care to provide patient services such as counseling and suggestive care. They are not used for patient diagnostic assistance because they cannot adhere to safety constraints and specialized clinical process knowledge ( ProKnow ) used to obtain clinical diagnoses. In this work, we define ProKnow as an ordered set of information that maps to evidence-based guidelines or categories of conceptual understanding to experts in a domain. We also introduce a new dataset of diagnostic conversations guided by safety constraints and ProKnow that healthcare professionals use ( ProKnow - data ). We develop a method for natural language question generation (NLG) that collects diagnostic information from the patient interactively ( ProKnow - algo ). We demonstrate the limitations of using state-of-the-art large-scale language models (LMs) on this dataset. ProKnow - algo incorporates the process knowledge through explicitly modeling safety, knowledge capture, and explainability. As computational metrics for evaluation do not directly translate to clinical settings, we involve expert clinicians in designing evaluation metrics that test four properties: safety, logical coherence, and knowledge capture for explainability while minimizing the standard cross entropy loss to preserve distribution semantics-based similarity to the ground truth. LMs with ProKnow - algo generated 89% safer questions in the depression and anxiety domain (tested property: safety ). Further, without ProKnow - algo generations question did not adhere to clinical process knowledge in ProKnow - data (tested property: knowledge capture ). In comparison, ProKnow - algo -based generations yield a 96% reduction in our metrics to measure knowledge capture. The explainability of the generated question is assessed by computing similarity with concepts in depression and anxiety knowledge bases. Overall, irrespective of the type of LMs, ProKnow - algo achieved an averaged 82% improvement over simple pre-trained LMs on safety, explainability, and process-guided question generation. For reproducibility, we will make ProKnow - data and the code repository of ProKnow - algo publicly available upon acceptance. 
    more » « less