Product disassembly plays a crucial role in the recycling, remanufacturing, and reuse of end-of-use (EoU) products. However, the current manual disassembly process is inefficient due to the complexity and variation of EoU products. While fully automating disassembly is not economically viable given the intricate nature of the task, there is potential in using human–robot collaboration (HRC) to enhance disassembly operations. HRC combines the flexibility and problem-solving abilities of humans with the precise repetition and handling of unsafe tasks by robots. Nevertheless, numerous challenges persist in technology, human workers, and remanufacturing work, which require comprehensive multidisciplinary research to address critical gaps. These challenges have motivated the authors to provide a detailed discussion on the opportunities and obstacles associated with introducing HRC to disassembly. In this regard, the authors have conducted a review of the recent progress in HRC disassembly and present the insights gained from this analysis from three distinct perspectives: technology, workers, and work.
This content will become publicly available on August 28, 2025
- Award ID(s):
- 2026276
- PAR ID:
- 10544010
- Publisher / Repository:
- Proceedings of the ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2024, August 25–28, 2024, Washington, DC, USA.
- Date Published:
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Disassembly is an integral part of maintenance, upgrade, and remanufacturing operations to recover end-of-use products. Optimization of disassembly sequences and the capability of robotic technology are crucial for managing the resource-intensive nature of dismantling operations. This study proposes an optimization framework for disassembly sequence planning under uncertainty considering human-robot collaboration. The proposed model combines three attributes: disassembly cost, disassembleability, and safety, to find the optimal path for dismantling a product and assigning each disassembly operation among humans and robots. The multi-attribute utility function has been employed to address uncertainty and make a tradeoff among multiple attributes. The disassembly time reflects the cost of disassembly and is assumed to be an uncertain parameter with a Beta probability density function; the disassembleability evaluates the feasibility of conducting operations by robot; finally, the safety index ensures the safety of human workers in the work environment. The optimization model identifies the best disassembly sequence and makes tradeoffs among multi-attributes. An example of a computer desktop illustrates how the proposed model works. The model identifies the optimal disassembly sequence with less disassembly cost, high disassembleability, and increased safety index while allocating disassembly operations between human and robot. A sensitivity analysis is conducted to show the model's performance when changing the disassembly cost for the robot.more » « less
-
Abstract Disassembly is an essential step for remanufacturing end-of-life (EOL) products. Optimization of disassembly sequences and the utilization of robotic technology could alleviate the labor-intensive nature of dismantling operations. This study proposes an optimization framework for disassembly sequence planning under uncertainty considering human–robot collaboration. The proposed framework combines three attributes: disassembly cost, safety, and complexity of disassembly, namely disassembleability, to identify the optimal disassembly path and allocate operations between human and robot. A multi-attribute utility function is used to address uncertainty and make a tradeoff among multiple attributes. The disassembly time reflects the cost of disassembly which is assumed to be an uncertain parameter with a Beta distribution; the disassembleability evaluates the feasibility of conducting operations by robot; finally, the safety index ensures the protection of human workers in the work environment. An example of dismantling a desktop computer is used to show the application. The model identifies the optimal disassembly sequence with less disassembly cost, high disassembleability, and increased safety index while allocating disassembly operations among human and robot. A sensitivity analysis is conducted to show the model's performance when changing the disassembly cost for the robot.more » « less
-
Human-robot collaboration (HRC) has become an integral element of many industries, including manufacturing. A fundamental requirement for safe HRC is to understand and predict human intentions and trajectories, especially when humans and robots operate in close proximity. However, predicting both human intention and trajectory components simultaneously remains a research gap. In this paper, we have developed a multi-task learning (MTL) framework designed for HRC, which processes motion data from both human and robot trajectories. The first task predicts human trajectories, focusing on reconstructing the motion sequences. The second task employs supervised learning, specifically a Support Vector Machine (SVM), to predict human intention based on the latent representation. In addition, an unsupervised learning method, Hidden Markov Model (HMM), is utilized for human intention prediction that offers a different approach to decoding the latent features. The proposed framework uses MTL to understand human behavior in complex manufacturing environments. The novelty of the work includes the use of a latent representation to capture temporal dynamics in human motion sequences and a comparative analysis of various encoder architectures. We validate our framework through a case study focused on a HRC disassembly desktop task. The findings confirm the system's capability to accurately predict both human intentions and trajectories.more » « less
-
Abstract Human-robot collaboration (HRC) has become an integral element of many industries, including manufacturing. A fundamental requirement for safe HRC is to understand and predict human intentions and trajectories, especially when humans and robots operate in close proximity. However, predicting both human intention and trajectory components simultaneously remains a research gap. In this paper, we have developed a multi-task learning (MTL) framework designed for HRC, which processes motion data from both human and robot trajectories. The first task predicts human trajectories, focusing on reconstructing the motion sequences. The second task employs supervised learning, specifically a Support Vector Machine (SVM), to predict human intention based on the latent representation. In addition, an unsupervised learning method, Hidden Markov Model (HMM), is utilized for human intention prediction that offers a different approach to decoding the latent features. The proposed framework uses MTL to understand human behavior in complex manufacturing environments. The novelty of the work includes the use of a latent representation to capture temporal dynamics in human motion sequences and a comparative analysis of various encoder architectures. We validate our framework through a case study focused on a HRC disassembly desktop task. The findings confirm the system’s capability to accurately predict both human intentions and trajectories.