skip to main content


This content will become publicly available on September 18, 2025

Title: Environmentally acquired gut-associated bacteria are not critical for growth and survival in a solitary bee, Megachile rotundata
ABSTRACT <p>Social bees have been extensively studied for their gut microbial functions, but the significance of the gut microbiota in solitary bees remains less explored. Solitary bee,<italic>Megachile rotundata</italic>females provision their offspring with pollen from various plant species, harboring a diverse microbial community that colonizes larvae guts. The<italic>Apilactobacillus</italic>is the most abundant microbe, but evidence concerning the effects of<italic>Apilactobacillus</italic>and other provision microbes on growth and survival are lacking. We hypothesized that the presence of<italic>Apilactobacillus</italic>in abundance would enhance larval and prepupal development, weight, and survival, while the absence of intact microbial communities was expected to have a negative impact on bee fitness. We reared larvae on pollen provisions with naturally collected microbial communities (Natural pollen) or devoid of microbial communities (Sterile pollen). We also assessed the impact of introducing<italic>Apilactobacillus micheneri</italic>by adding it to both types of pollen provisions. Feeding larvae with sterile pollen +<italic>A. micheneri</italic>led to the highest mortality rate, followed by natural pollen +<italic>A. micheneri</italic>, and sterile pollen. Larval development was significantly delayed in groups fed with sterile pollen. Interestingly, larval and prepupal weights did not significantly differ across treatments compared to natural pollen-fed larvae. 16S rRNA gene sequencing found a dominance of<italic>Sodalis</italic>, when<italic>A. micheneri</italic>was introduced to natural pollen. The presence of<italic>Sodalis</italic>with abundant<italic>A. michene</italic>ri suggests potential crosstalk between both, shaping bee nutrition and health. Hence, this study highlights that the reliance on nonhost-specific environmental bacteria may not impact fitness of<italic>M. rotundata</italic>.</p><sec><title>IMPORTANCE

This study investigates the impact of environmentally acquired gut microbes of solitary bee fitness with insights into the microbial ecology of bee and their health. While the symbiotic microbiome is well-studied in social bees, the role of environmental acquired microbiota in solitary bees remains unclear. Assessing this relationship in a solitary pollinator, the leaf-cutting bee,Megachile rotundata, we discovered that this bee species does not depend on the diverse environmental bacteria found in pollen for either its larval growth or survival. Surprisingly, high concentrations of the most abundant pollen bacteria, Apilactobacillus micheneridid not consistently benefit bee fitness, but caused larval mortality. Our findings also suggest an interaction betweenApilactobacillusand theSodalisand perhaps their role in bee nutrition. Hence, this study provides significant insights that contribute to understanding the fitness, conservation, and pollination ecology of other solitary bee species in the future.

 
more » « less
Award ID(s):
1826834 1557940
PAR ID:
10544088
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Tortosa, Pablo
Publisher / Repository:
American Society of Microbiology
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
90
Issue:
9
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change is rapidly warming thermal environments, an important abiotic stimulus governing interactions between microbial symbionts and their hosts. Increasing evidence suggests that solitary bees rely on pollen provision microbes for successful development. However, the effects of heat stress on provision microbiota and the resulting consequences for larval health and development remain to be examined. We performed an in vitro study to investigate the effects of the thermal environment on provision microbiome composition and measured fitness outcomes forOsmia lignarialarvae. While pollen sterilisation removed bacteria from microbe‐rich provisions, larval survivorship did not significantly differ between bees reared on microbe‐rich (unmanipulated) diets and provisions treated with ethylene oxide (EO) gas. In contrast to previous research in solitary bees, larvae reared on EO‐treated provisions weighed more and had higher total fat content, with temperature moderating the degree of difference. As anticipated, we observed a negative relationship between the duration of larval development and temperature. Our results indicated that an intact provision microbiota may not always improve bee fitness and that bee‐microbe interactions during larval development may contribute to the size‐shrinking effect observed for cavity‐nesting bees under warming conditions.

     
    more » « less
  2. Microbes, including diverse bacteria and fungi, play an important role in the health of both solitary and social bees. Among solitary bee species, in which larvae remain in a closed brood cell throughout development, experiments that modified or eliminated the brood cell microbiome through sterilization indicated that microbes contribute substantially to larval nutrition and are in some cases essential for larval development. To better understand how feeding larvae impact the microbial community of their pollen/nectar provisions, we examine the temporal shift in the bacterial community in the presence and absence of actively feeding larvae of the solitary, stem-nesting bee, Osmia cornifrons (Megachilidae). Our results indicate that the O . cornifrons brood cell bacterial community is initially diverse. However, larval solitary bees modify the microbial community of their pollen/nectar provisions over time by suppressing or eliminating rare taxa while favoring bacterial endosymbionts of insects and diverse plant pathogens, perhaps through improved conditions or competitive release. We suspect that the proliferation of opportunistic plant pathogens may improve nutrient availability of developing larvae through degradation of pollen. Thus, the health and development of solitary bees may be interconnected with pollen bacterial diversity and perhaps with the propagation of plant pathogens. 
    more » « less
  3. null (Ed.)
    Abstract Pathogens and lack of floral resources interactively impair global pollinator health. However, epidemiological and nutritional studies aimed at understanding bee declines have historically focused on social species, with limited evaluations of solitary bees. Here, we asked whether Crithidia bombi , a trypanosomatid gut pathogen known to infect bumble bees, could infect the solitary bees Osmia lignaria (females) and Megachile rotundata (males), and whether nutritional stress influenced infection patterns and bee survival. We found that C. bombi was able to infect both solitary bee species, with 59% of O. lignaria and 29% of M. rotundata bees experiencing pathogen replication 5–11 days following inoculation. Moreover, access to pollen resulted in O. lignaria living longer, although it did not influence M. rotundata survival. Access to pollen did not affect infection probability or resulting pathogen load in either species. Similarly, inoculating with the pathogen did not drive survival patterns in either species during the 5–11-day laboratory assays. Our results demonstrate that solitary bees can be hosts of a known bumble bee pathogen, and that access to pollen is an important contributing factor for bee survival, thus expanding our understanding of factors contributing to solitary bee health. 
    more » « less
  4. Introduction Interest for bee microbiota has recently been rising, alleviating the gap in knowledge in regard to drivers of solitary bee gut microbiota. However, no study has addressed the microbial acquisition routes of tropical solitary bees. For both social and solitary bees, the gut microbiota has several essential roles such as food processing and immune responses. While social bees such as honeybees maintain a constant gut microbiota by direct transmission from individuals of the same hive, solitary bees do not have direct contact between generations. They thus acquire their gut microbiota from the environment and/or the provision of their brood cell. To establish the role of life history in structuring the gut microbiota of solitary bees, we characterized the gut microbiota of Centris decolorata from a beach population in Mayagüez, Puerto Rico. Females provide the initial brood cell provision for the larvae, while males patrol the nest without any contact with it. We hypothesized that this behavior influences their gut microbiota, and that the origin of larval microbiota is from brood cell provisions. Methods We collected samples from adult females and males of C. decolorata ( n  = 10 each, n  = 20), larvae ( n  = 4), and brood cell provisions ( n  = 10). For comparison purposes, we also sampled co-occurring female foragers of social Apis mellifera ( n  = 6). The samples were dissected, their DNA extracted, and gut microbiota sequenced using 16S rRNA genes. Pollen loads of A. mellifera and C. decolorata were analyzed and interactions between bee species and their plant resources were visualized using a pollination network. Results While we found the gut of A. mellifera contained the same phylotypes previously reported in the literature, we noted that the variability in the gut microbiota of solitary C. decolorata was significantly higher than that of social A. mellifera . Furthermore, the microbiota of adult C. decolorata mostly consisted of acetic acid bacteria whereas that of A. mellifera mostly had lactic acid bacteria. Among C. decolorata , we found significant differences in alpha and beta diversity between adults and their brood cell provisions (Shannon and Chao1 p  < 0.05), due to the higher abundance of families such as Rhizobiaceae and Chitinophagaceae in the brood cells, and of Acetobacteraceae in adults. In addition, the pollination network analysis indicated that A. mellifera had a stronger interaction with Byrsonima sp. and a weaker interaction with Combretaceae while interactions between C. decolorata and its plant resources were constant with the null model. Conclusion Our data are consistent with the hypothesis that behavioral differences in brood provisioning between solitary and social bees is a factor leading to relatively high variation in the microbiota of the solitary bee. 
    more » « less
  5. null (Ed.)
    Mounting evidence suggests that microbes found in the pollen provisions of wild and solitary bees are important drivers of larval development. As these microbes are also known to be transmitted via the environment, most likely from flowers, the diet breadth of a bee may affect the diversity and identity of the microbes that occur in its pollen provisions. Here, we tested the hypothesis that, due to the importance of floral transmission of microbes, diet breadth affects pollen provision microbial community composition. We collected pollen provisions at four sites from the polylectic bee Osmia lignaria and the oligolectic bee Osmia ribifloris. We used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacteria found in these provisions. We found minimal overlap in the specific bacterial variants in pollen provisions across the host species, even when the bees were constrained to foraging from the same flowers in cages at one site. Similarly, there was minimal overlap in the specific bacterial variants across sites, even within the same host species. Together, these findings highlight the importance of environmental transmission and host specific sorting influenced by diet breadth for microbes found in pollen provisions. Future studies addressing the functional consequences of this filtering, along with tests for differences between more species of oligoletic and polylectic bees will provide rich insights into the microbial ecology of solitary bees. 
    more » « less