skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Malicious Secure, Structure-Aware Private Set Intersection
Structure-Aware private set intersection (sa-PSI) is a variant of PSI where Alice’s input set A has some publicly known structure, Bob’s input B is an unstructured set of points, and Alice learns the intersection A ∩ B. sa-PSI was recently introduced by Garimella et al. (Crypto 2022), who described a semi-honest protocol with communication that scales with the description size of Alice’s set, instead of its cardinality. In this paper, we present the first sa-PSI protocol secure against malicious adversaries. sa-PSI protocols are built from function secret sharing (FSS) schemes, and the main challenge in our work is ensuring that multiple FSS sharings encode the same structured set. We do so using a cut-and-choose approach. In order to make FSS compatible with cut-and-choose, we introduce a new variant of function secret sharing, called derandomizable FSS (dFSS). We show how to construct dFSS for union of geometric balls, leading to a malicious-secure sa-PSI protocol where Alice’s input is a union of balls. We also improve prior FSS constructions, giving asymptotic improvements to semi-honest sa-PSI.  more » « less
Award ID(s):
2150726
PAR ID:
10544116
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
ISBN:
978-3-031-38557-5
Format(s):
Medium: X
Location:
Santa Barbara, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated Learning (FL) enables multiple clients to collaboratively train a machine learning model while keeping their data private, eliminating the need for data sharing. Two common approaches to secure aggregation (SA) in FL are the single-aggregator and multiple-aggregator models. This work focuses on improving the multiple-aggregator model. Existing multiple-aggregator protocols such as Prio (NSDI 2017), Prio+ (SCN 2022), Elsa (S&P 2023) either offer robustness only in the presence of semi-honest servers or provide security without robustness and are limited to two aggregators. We introduce Mario, the first multipleaggregator Secure Aggregation protocol that is both secure and robust in a malicious setting. Similar to prior work of Prio and Prio+, Mario provides secure aggregation in a setup of n servers and m clients. Unlike previous work, Mario removes the assumption of semi-honest servers, and provides a complete protocol with robustness under malicious clients and malicious servers. Our implementation shows that Mario is 3.40× and 283.4× faster than Elsa and Prio+, respecitively 
    more » « less
  2. Abstract Private set intersection (PSI) allows two mutually distrusting parties each with a set as input, to learn the intersection of both their sets without revealing anything more about their respective input sets. Traditionally, PSI studies the static setting where the computation is performed only once on both parties’ input sets. We initiate the study of updatable private set intersection (UPSI), which allows parties to compute the intersection of their private sets on a regular basis with sets that also constantly get updated. We consider two specific settings. In the first setting called UPSI with addition , parties can add new elements to their old sets. We construct two protocols in this setting, one allowing both parties to learn the output and the other only allowing one party to learn the output. In the second setting called UPSI with weak deletion , parties can additionally delete their old elements every t days. We present a protocol for this setting allowing both parties to learn the output. All our protocols are secure against semi-honest adversaries and have the guarantee that both the computational and communication complexity only grow with the set updates instead of the entire sets. Finally, we implement our UPSI with addition protocols and compare with the state-of-the-art PSI protocols. Our protocols compare favorably when the total set size is sufficiently large, the new updates are sufficiently small, or in networks with low bandwidth. 
    more » « less
  3. Abstract In this work we demonstrate that allowing differentially private leakage can significantly improve the concrete performance of secure 2-party computation (2PC) protocols. Specifically, we focus on the private set intersection (PSI) protocol of Rindal and Rosulek (CCS 2017), which is the fastest PSI protocol with security against malicious participants. We show that if differentially private leakage is allowed, the cost of the protocol can be reduced by up to 63%, depending on the desired level of differential privacy. On the technical side, we introduce a security model for differentially-private leakage in malicious-secure 2PC. We also introduce two new and improved mechanisms for “differentially private histogram overestimates,” the main technical challenge for differentially-private PSI. 
    more » « less
  4. We describe a new paradigm for multi-party private set intersection cardinality (PSI-CA) that allows $$n$$ parties to compute the intersection size of their datasets without revealing any additional information. We explore a variety of instantiations of this paradigm. By operating under the assumption that a particular subset of parties refrains from collusion, our protocols avoid computationally expensive public-key operations and are secure in the presence of a semi-honest adversary. We demonstrate the practicality of our PSI-CA with an implementation. For $n=16$ parties with data-sets of $$2^{20}$$ items each, our server-aided variant takes 71 seconds. Interestingly, in the server-less setting, the same task takes only 7 seconds. To the best of our knowledge, this is the first `special purpose' implementation of a multi-party PSI-CA from symmetric-key techniques (i.e. an implementation that does not rely on a generic underlying MPC).We study two interesting applications -- heatmap computation and associated rule learning (ARL) -- that can be computed securely using a dot-product as a building block. We analyse the performance of securely computing heatmap and ARL using our protocol and compare that to the state-of-the-art. 
    more » « less
  5. Private set intersection (PSI) allows two mutually distrusting parties each holding a private set of elements, to learn the intersection of their sets without revealing anything beyond the intersection. Recent work (Badrinarayanan et al., PoPETS’22) initiates the study of updatable PSI (UPSI), which allows the two parties to compute PSI on a regular basis with sets that constantly get updated, where both the computation and communication complexity only grow with the size of the small updates and not the large entire sets. However, there are several limitations of their presented protocols. First, they can only be used to compute the plain PSI functionality and do not support extended functionalities such as PSI-Cardinality and PSI-Sum. Second, they only allow parties to add new elements to their existing set and do not support arbitrary deletion of elements. Finally, their addition-only protocols either require both parties to learn the output or only achieve low complexity in an amortized sense and incur linear worst-case complexity. In this work, we address all the above limitations. In particular, we study UPSI with semi-honest security in both the addition-only and addition-deletion settings. We present new protocols for both settings that support plain PSI as well as extended functionalities including PSI-Cardinality and PSI-Sum, achieving one-sided output (which implies two-sided output). In the addition-only setting, we also present a protocol for a more general functionality Circuit-PSI that outputs secret shares of the intersection. All of our protocols have worst-case computation and communication complexity that only grow with the set updates instead of the entire sets (except for a polylogarithmic factor). We implement our new UPSI protocols and compare with the state-of-the-art protocols for PSI and extended functionalities. Our protocols compare favorably when the total set sizes are sufficiently large, the new updates are sufficiently small, or in networks with low bandwidth. 
    more » « less