skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ConEC: Earnings Call Dataset with Real-world Contexts for Benchmarking Contextual Speech Recognition
Knowing the particular context associated with a conversation can help improving the performance of an automatic speech recognition (ASR) system. For example, if we are provided with a list of in-context words or phrases — such as the speaker’s contacts or recent song playlists — during inference, we can bias the recognition process towards this list. There are many works addressing contextual ASR; however, there is few publicly available real benchmark for evaluation, making it difficult to compare different solutions. To this end, we provide a corpus (“ConEC”) and baselines to evaluate contextual ASR approaches, grounded on real-world applications. The ConEC corpus is based on public-domain earnings calls (ECs) and associated supplementary materials, such as presentation slides, earnings news release as well as a list of meeting participants’ names and affiliations. We demonstrate that such real contexts are noisier than artificially synthesized contexts that contain the ground truth, yet they still make great room for future improvement of contextual ASR technology  more » « less
Award ID(s):
2120435
PAR ID:
10544356
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ELRA and ICCL
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Calzolari, Nicoletta; Kan, Min-Yen; Hoste, Veronique; Lenci, Alessandro; Sakti, Sakriani; Xue, Nianwen (Ed.)
    Knowing the particular context associated with a conversation can help improving the performance of an automatic speech recognition (ASR) system. For example, if we are provided with a list of in-context words or phrases — such as the speaker’s contacts or recent song playlists — during inference, we can bias the recognition process towards this list. There are many works addressing contextual ASR; however, there is few publicly available real benchmark for evaluation, making it difficult to compare different solutions. To this end, we provide a corpus (“ConEC”) and baselines to evaluate contextual ASR approaches, grounded on real-world applications. The ConEC corpus is based on public-domain earnings calls (ECs) and associated supplementary materials, such as presentation slides, earnings news release as well as a list of meeting participants’ names and affiliations. We demonstrate that such real contexts are noisier than artificially synthesized contexts that contain the ground truth, yet they still make great room for future improvement of contextual ASR technology. 
    more » « less
  2. Existing research suggests that automatic speech recognition (ASR) models can benefit from additional contexts (e.g., contact lists, user specified vocabulary). Rare words and named entities can be better recognized with contexts. In this work, we propose two simple yet effective techniques to improve context-aware ASR models. First, we inject contexts into the encoders at an early stage instead of merely at their last layers. Second, to enforce the model to leverage the contexts during training, we perturb the reference transcription with alternative spellings so that the model learns to rely on the contexts to make correct predictions. On LibriSpeech, our techniques together reduce the rare word error rate by 60% and 25% relatively compared to no biasing and shallow fusion, making the new state-of-the-art performance. On SPGISpeech and a real-world dataset ConEC, our techniques also yield good improvements over the baselines. 
    more » « less
  3. null (Ed.)
    “Transcription bottlenecks”, created by a shortage of effective human transcribers are one of the main challenges to endangered language (EL) documentation. Automatic speech recognition (ASR) has been suggested as a tool to overcome such bottlenecks. Following this suggestion, we investigated the effectiveness for EL documentation of end-to-end ASR, which unlike Hidden Markov Model ASR systems, eschews linguistic resources but is instead more dependent on large-data settings. We open source a Yoloxochitl Mixtec EL corpus. First, we review our method in building an end-to-end ASR system in a way that would be reproducible by the ASR community. We then propose a novice transcription correction task and demonstrate how ASR systems and novice transcribers can work together to improve EL documentation. We believe this combinatory methodology would mitigate the transcription bottleneck and transcriber shortage that hinders EL documentation. 
    more » « less
  4. null (Ed.)
    Abstract Named entity recognition systems achieve remarkable performance on domains such as English news. It is natural to ask: What are these models actually learning to achieve this? Are they merely memorizing the names themselves? Or are they capable of interpreting the text and inferring the correct entity type from the linguistic context? We examine these questions by contrasting the performance of several variants of architectures for named entity recognition, with some provided only representations of the context as features. We experiment with GloVe-based BiLSTM-CRF as well as BERT. We find that context does influence predictions, but the main factor driving high performance is learning the named tokens themselves. Furthermore, we find that BERT is not always better at recognizing predictive contexts compared to a BiLSTM-CRF model. We enlist human annotators to evaluate the feasibility of inferring entity types from context alone and find that humans are also mostly unable to infer entity types for the majority of examples on which the context-only system made errors. However, there is room for improvement: A system should be able to recognize any named entity in a predictive context correctly and our experiments indicate that current systems may be improved by such capability. Our human study also revealed that systems and humans do not always learn the same contextual clues, and context-only systems are sometimes correct even when humans fail to recognize the entity type from the context. Finally, we find that one issue contributing to model errors is the use of “entangled” representations that encode both contextual and local token information into a single vector, which can obscure clues. Our results suggest that designing models that explicitly operate over representations of local inputs and context, respectively, may in some cases improve performance. In light of these and related findings, we highlight directions for future work. 
    more » « less
  5. Abstract End users are increasingly using trigger-action platforms like If-This-Then-That (IFTTT) to create applets to connect smart-home devices and services. However, there are inherent implicit risks in using such applets—even non-malicious ones—as sensitive information may leak through their use in certain contexts ( e.g., where the device is located, who can observe the resultant action). This work aims to understand to what extent end users can assess this implicit risk. More importantly we explore whether usage context makes a difference in end-users’ perception of such risks. Our work complements prior work that has identified the impact of usage context on expert evaluation of risks in IFTTT by focusing the impact of usage context on end-users’ risk perception. Through a Mechanical Turk survey of 386 participants on 49 smart-home IFTTT applets, we found that participants have a nuanced view of contextual factors and that different values for contextual factors impact end-users’ risk perception differently. Further, our findings show that nudging the participants to think about different usage contexts led them to think deeper about the associated risks and raise their concern scores. 
    more » « less