We address a system of equations modeling an incompressible fluid interacting with an elastic body. We prove the local existence when the initial velocity belongs to the space
This paper presents a subgradient-based algorithm for constrained nonsmooth convex optimization that does not require projections onto the feasible set. While the well-established Frank–Wolfe algorithm and its variants already avoid projections, they are primarily designed for smooth objective functions. In contrast, our proposed algorithm can handle nonsmooth problems with general convex functional inequality constraints. It achieves an
- PAR ID:
- 10544383
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Computational Optimization and Applications
- Volume:
- 89
- Issue:
- 3
- ISSN:
- 0926-6003
- Format(s):
- Medium: X Size: p. 927-975
- Size(s):
- p. 927-975
- Sponsoring Org:
- National Science Foundation
More Like this
-
On the Local Existence of Solutions to the Fluid–Structure Interaction Problem with a Free Interface
Abstract and the initial structure velocity is in$$H^{1.5+\epsilon }$$ , where$$H^{1+\epsilon }$$ .$$\epsilon \in (0, 1/20)$$ -
Abstract We address a system of equations modeling a compressible fluid interacting with an elastic body in dimension three. We prove the local existence and uniqueness of a strong solution when the initial velocity belongs to the space
and the initial structure velocity is in$$H^{2+\epsilon }$$ , where$$H^{1.5+\epsilon }$$ .$$\epsilon \in (0,1/2)$$ -
arXiv:2311.11180v1 (Ed.)This paper presents a subgradient-based algorithm for constrained nonsmooth convex optimization that does not require projections onto the feasible set. While the well-established Frank-Wolfe algorithm and its variants already avoid projections, they are primarily designed for smooth objective functions. In con- trast, our proposed algorithm can handle nonsmooth problems with general convex functional inequality constraints. It achieves an ϵ-suboptimal solution in O(ϵ^−2) iterations, with each iteration requiring only a single (potentially inexact) Linear Minimization Oracle (LMO) call and a (possibly inexact) subgra- dient computation. This performance is consistent with existing lower bounds. Similar performance is observed when deterministic subgradients are replaced with stochastic subgradients. In the special case where there are no functional inequality constraints, our algorithm competes favorably with a recent nonsmooth projection-free method designed for constraint-free problems. Our approach uti- lizes a simple separation scheme in conjunction with a new Lagrange multiplier update rule.more » « less
-
Abstract Approximate integer programming is the following: For a given convex body
, either determine whether$$K \subseteq {\mathbb {R}}^n$$ is empty, or find an integer point in the convex body$$K \cap {\mathbb {Z}}^n$$ which is$$2\cdot (K - c) +c$$ K , scaled by 2 from its center of gravityc . Approximate integer programming can be solved in time while the fastest known methods for exact integer programming run in time$$2^{O(n)}$$ . So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point$$2^{O(n)} \cdot n^n$$ can be found in time$$x^* \in (K \cap {\mathbb {Z}}^n)$$ , provided that the$$2^{O(n)}$$ remainders of each component for some arbitrarily fixed$$x_i^* \mod \ell $$ of$$\ell \ge 5(n+1)$$ are given. The algorithm is based on a$$x^*$$ cutting-plane technique , iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a algorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (Integer programming, lattice algorithms, and deterministic, vol. Estimation. Georgia Institute of Technology, Atlanta, 2012) that is considerably more involved. Our algorithm also relies on a new$$2^{O(n)}n^n$$ asymmetric approximate Carathéodory theorem that might be of interest on its own. Our second method concerns integer programming problems in equation-standard form . Such a problem can be reduced to the solution of$$Ax = b, 0 \le x \le u, \, x \in {\mathbb {Z}}^n$$ approximate integer programming problems. This implies, for example that$$\prod _i O(\log u_i +1)$$ knapsack orsubset-sum problems withpolynomial variable range can be solved in time$$0 \le x_i \le p(n)$$ . For these problems, the best running time so far was$$(\log n)^{O(n)}$$ .$$n^n \cdot 2^{O(n)}$$ -
Abstract We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gate-level error with probability close to one. We model noise by adding a pair of weak, unital, single-qubit noise channels after each two-qubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution
and the corresponding noiseless output distribution$$p_{\text {noisy}}$$ shrink exponentially with the expected number of gate-level errors. Specifically, the linear cross-entropy benchmark$$p_{\text {ideal}}$$ F that measures this correlation behaves as , where$$F=\text {exp}(-2s\epsilon \pm O(s\epsilon ^2))$$ is the probability of error per circuit location and$$\epsilon $$ s is the number of two-qubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution and the uniform distribution$$p_{\text {noisy}}$$ decays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {unif}}$$ . In other words, although at least one local error occurs with probability$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1-F)p_{\text {unif}}$$ , the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$1-F$$ . Thus, the “white-noise approximation” is meaningful when$$O(F\epsilon \sqrt{s})$$ , a quadratically weaker condition than the$$\epsilon \sqrt{s} \ll 1$$ requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$\epsilon s\ll 1$$ , which corresponds to only$$s \ge \Omega (n\log (n))$$ logarithmic depth circuits, and if, additionally, the inverse error rate satisfies , which is needed to ensure errors are scrambled faster than$$\epsilon ^{-1} \ge {\tilde{\Omega }}(n)$$ F decays. The white-noise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexity-theoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from second-moment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds.