skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinguishing genelet circuit input pulses via a pulse detector
Abstract Chemical systems have the potential to direct the next generation of dynamic materials if they can be integrated with a material while acting as the material’s own regulatory network. Chemical networks that use DNA and RNA strand displacement coupled with RNA synthesis and degradation, such as genelets, are promising chemical systems for this role. Genelets can produce a range of dynamic behaviors that respond to unique sets of environmental inputs. While a number of networks that generate specific types of outputs which vary in both time and amplitude have been developed, there are fewer examples of networks that recognize specific types of inputs in time and amplitude. Advanced chemical circuits in biology are capable of reading a given substrate concentration with relatively high accuracy to direct downstream function, demonstrating that such a chemical circuit is possible. Taking inspiration from this, we designed a genelet circuit which responds to a range of inputs by delivering a binary output based on the input concentration, and tested the network’s performance using an in silico model of circuit behavior. By modifying the concentrations of two circuit elements, we demonstrated that such a network topography could yield various target input concentration profiles to which a given circuit is sensitive. The number of unique elements in the final network topography as well as the individual circuit element concentrations are commensurate with properties of circuits that have been demonstrated experimentally. These factors suggest that such a network could be built and characterized in the laboratory.  more » « less
Award ID(s):
2107246
PAR ID:
10544549
Author(s) / Creator(s):
;
Publisher / Repository:
Natural Computing
Date Published:
Journal Name:
Natural Computing
ISSN:
1567-7818
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aljadeff, Johnatan (Ed.)
    Neural circuits exhibit complex activity patterns, both spontaneously and evoked by external stimuli. Information encoding and learning in neural circuits depend on how well time-varying stimuli can control spontaneous network activity. We show that in firing-rate networks in the balanced state, external control of recurrent dynamics, i.e., the suppression of internally-generated chaotic variability, strongly depends on correlations in the input. A distinctive feature of balanced networks is that, because common external input is dynamically canceled by recurrent feedback, it is far more difficult to suppress chaos with common input into each neuron than through independent input. To study this phenomenon, we develop a non-stationary dynamic mean-field theory for driven networks. The theory explains how the activity statistics and the largest Lyapunov exponent depend on the frequency and amplitude of the input, recurrent coupling strength, and network size, for both common and independent input. We further show that uncorrelated inputs facilitate learning in balanced networks. 
    more » « less
  2. Starting in the early 2000s, sophisticated technologies have been developed for the rational construction of synthetic genetic networks that implement specified logical functionalities. Despite impressive progress, however, the scaling necessary in order to achieve greater computational power has been hampered by many constraints, including repressor toxicity and the lack of large sets of mutually orthogonal repressors. As a consequence, a typical circuit contains no more than roughly seven repressor-based gates per cell. A possible way around this scalability problem is to distribute the computation among multiple cell types, each of which implements a small subcircuit, which communicate among themselves using diffusible small molecules (DSMs). Examples of DSMs are those employed by quorum sensing systems in bacteria. This paper focuses on systematic ways to implement this distributed approach, in the context of the evaluation of arbitrary Boolean functions. The unique characteristics of genetic circuits and the properties of DSMs require the development of new Boolean synthesis methods, distinct from those classically used in electronic circuit design. In this work, we propose a fast algorithm to synthesize distributed realizations for any Boolean function, under constraints on the number of gates per cell and the number of orthogonal DSMs. The method is based on an exact synthesis algorithm to find the minimal circuit per cell, which in turn allows us to build an extensive database of Boolean functions up to a given number of inputs. For concreteness, we will specifically focus on circuits of up to 4 inputs, which might represent, for example, two chemical inducers and two light inputs at different frequencies. Our method shows that, with a constraint of no more than seven gates per cell, the use of a single DSM increases the total number of realizable circuits by at least 7.58-fold compared to centralized computation. Moreover, when allowing two DSM’s, one can realize 99.995% of all possible 4-input Boolean functions, still with at most 7 gates per cell. The methodology introduced here can be readily adapted to complement recent genetic circuit design automation software. A toolbox that uses the proposed algorithm was created and made available at https://github. com/sontaglab/DBC/. 
    more » « less
  3. Rhythmic behaviors (e.g., walking, breathing, and chewing) are produced by central pattern generator (CPG) circuits. These circuits are highly dynamic due to a multitude of input they receive from hormones, sensory neurons, and modulatory projection neurons. Such inputs not only turn CPG circuits on and off, but they adjust their synaptic and cellular properties to select behaviorally relevant outputs that last from seconds to hours. Similar to the contributions of fully identified connectomes to establishing general principles of circuit function and flexibility, identified modulatory neurons have enabled key insights into neural circuit modulation. For instance, while bath-applying neuromodulators continues to be an important approach to studying neural circuit modulation, this approach does not always mimic the neural circuit response to neuronal release of the same modulator. There is additional complexity in the actions of neuronally-released modulators due to: (1) the prevalence of co-transmitters, (2) local- and long-distance feedback regulating the timing of (co-)release, and (3) differential regulation of co-transmitter release. Identifying the physiological stimuli (e.g., identified sensory neurons) that activate modulatory projection neurons has demonstrated multiple “modulatory codes” for selecting particular circuit outputs. In some cases, population coding occurs, and in others circuit output is determined by the firing pattern and rate of the modulatory projection neurons. The ability to perform electrophysiological recordings and manipulations of small populations of identified neurons at multiple levels of rhythmic motor systems remains an important approach for determining the cellular and synaptic mechanisms underlying the rapid adaptability of rhythmic neural circuits. 
    more » « less
  4. Abstract Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage theDrosophilasong production system3to investigate the role of several neuron types4–7in song patterning near versus far from the female fly. Male flies sing ‘simple’ trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9can be combined to enable circuit flexibility required for dynamic communication. 
    more » « less
  5. Neuromorphic cognitive computing offers a bio-inspired means to approach the natural intelligence of biological neural systems in silicon integrated circuits. Typically, such circuits either reproduce biophysical neuronal dynamics in great detail as tools for computational neuroscience, or abstract away the biology by simplifying the functional forms of neural computation in large-scale systems for machine intelligence with high integration density and energy efficiency. Here we report a hybrid which offers biophysical realism in the emulation of multi-compartmental neuronal network dynamics at very large scale with high implementation efficiency, and yet with high flexibility in configuring the functional form and the network topology. The integrate-and-fire array transceiver (IFAT) chip emulates the continuous-time analog membrane dynamics of 65 k two-compartment neurons with conductance-based synapses. Fired action potentials are registered as address-event encoded output spikes, while the four types of synapses coupling to each neuron are activated by address-event decoded input spikes for fully reconfigurable synaptic connectivity, facilitating virtual wiring as implemented by routing address-event spikes externally through synaptic routing table. Peak conductance strength of synapse activation specified by the address-event input spans three decades of dynamic range, digitally controlled by pulse width and amplitude modulation (PWAM) of the drive voltage activating the log-domain linear synapse circuit. Two nested levels of micro-pipelining in the IFAT architecture improve both throughput and efficiency of synaptic input. This two-tier micro-pipelining results in a measured sustained peak throughput of 73 Mspikes/s and overall chip-level energy efficiency of 22 pJ/spike. Non-uniformity in digitally encoded synapse strength due to analog mismatch is mitigated through single-point digital offset calibration. Combined with the flexibly layered and recurrent synaptic connectivity provided by hierarchical address-event routing of registered spike events through external memory, the IFAT lends itself to efficient large-scale emulation of general biophysical spiking neural networks, as well as rate-based mapping of rectified linear unit (ReLU) neural activations. 
    more » « less