Phosphotriesterases (PTEs) represent a class of enzymes capable of efficient neutralization of organophosphates (OPs), a dangerous class of neurotoxic chemicals. PTEs suffer from low catalytic activity, particularly at higher temperatures, due to low thermostability and low solubility. Supercharging, a protein engineering approach via selective mutation of surface residues to charged residues, has been successfully employed to generate proteins with increased solubility and thermostability by promoting charge–charge repulsion between proteins. We set out to overcome the challenges in improving PTE activity against OPs by employing a computational protein supercharging algorithm in Rosetta. Here, we discover two supercharged PTE variants, one negatively supercharged (with −14 net charge) and one positively supercharged (with +12 net charge) and characterize them for their thermodynamic stability and catalytic activity. We find that positively supercharged PTE possesses slight but significant losses in thermostability, which correlates to losses in catalytic efficiency at all temperatures, whereas negatively supercharged PTE possesses increased catalytic activity across 25°C–55°C while offering similar thermostability characteristic to the parent PTE. The impact of supercharging on catalytic efficiency will inform the design of shelf-stable PTE and criteria for enzyme engineering.
more » « less- PAR ID:
- 10544633
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Protein Engineering, Design and Selection
- Volume:
- 37
- ISSN:
- 1741-0126
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Supercharged proteins exhibit high solubility and other desirable properties, but no engineered superpositively charged enzymes have previously been made. Superpositively charged variants of proteins such as green fluorescent protein have been efficiently encapsulated within Archaeoglobus fulgidus thermophilic ferritin (AfFtn). Encapsulation by supramolecular ferritin can yield systems with a variety of sequestered cargo. To advance applications in enzymology and green chemistry, we sought a general method for supercharging an enzyme that retains activity and is compatible with AfFtn encapsulation. The zinc metalloenzyme human carbonic anhydrase II (hCAII) is an attractive encapsulation target based on its hydrolytic activity and physiologic conversion of carbon dioxide to bicarbonate. A computationally designed variant of hCAII contains positively charged residues substituted at 19 sites on the protein’s surface, resulting in a shift of the putative net charge from −1 to +21. This designed hCAII(+21) exhibits encapsulation within AfFtn without the need for fusion partners or additional reagents. The hCAII(+21) variant retains esterase activity comparable to the wild type and spontaneously templates the assembly of AfFtn 24mers around itself. The AfFtn–hCAII(+21) host–guest complex exhibits both greater activity and thermal stability when compared to hCAII(+21). Upon immobilization on a solid support, AfFtn–hCAII(+21) retains enzymatic activity and exhibits an enhancement of activity at elevated temperatures.more » « less
-
Lignocellulosic biomass recalcitrance to enzymatic degradation necessitates high enzyme loadings, incurring large processing costs for the production of industrial-scale biofuels or biochemicals. Manipulating surface charge interactions to minimize nonproductive interactions between cellulolytic enzymes and plant cell wall components (e.g., lignin or cellulose) via protein supercharging has been hypothesized to improve biomass biodegradability but with limited demonstrated success to date. Here, we characterize the effect of introducing non-natural enzyme surface mutations and net charge on cellulosic biomass hydrolysis activity by designing a library of supercharged family-5 endoglucanase Cel5A and its native family-2a carbohydrate binding module (CBM) originally belonging to an industrially relevant thermophilic microbe, Thermobifida fusca. A combinatorial library of 33 mutant constructs containing different CBM and Cel5A designs spanning a net charge range of −52 to 37 was computationally designed using Rosetta macromolecular modeling software. Activity for all mutants was rapidly characterized as soluble cell lysates, and promising mutants (containing mutations on the CBM, Cel5A catalytic domain, or both CBM and Cel5A domains) were then purified and systematically characterized. Surprisingly, often endocellulases with mutations on the CBM domain alone resulted in improved activity on cellulosic biomass, with three top-performing supercharged CBM mutants exhibiting between 2- and 5-fold increase in activity, compared to native enzyme, on both pretreated biomass enriched in lignin (i.e., corn stover) and isolated crystalline/amorphous cellulose. Furthermore, we were able to clearly demonstrate that endocellulase net charge can be selectively fine-tuned using a protein supercharging protocol for targeting distinct substrates and maximizing biocatalytic activity. Additionally, several supercharged CBM-containing endocellulases exhibited a 5–10 °C increase in optimal hydrolysis temperature, compared to native enzyme, which enabled further increase in hydrolytic yield at higher operational reaction temperatures. This study demonstrates the first successful implementation of enzyme supercharging of cellulolytic enzymes to increase hydrolytic activity toward complex lignocellulosic biomass-derived substrates.more » « less
-
The ecological response of benthic foraminifera to bioavailable Potentially Toxic Elements (PTEs) was evaluated in Lagos Lagoon (Nigeria). We sampled and analyzed PTEs across Lagos Lagoon with the aim to investigate the extent of contaminated sediments, to document their distribution, and to explore the relationship between PTE concentration and the spatial distribution, composition, abundance, and species richness of benthic foraminifera biotas. PTE’s recordings showed a wide range reflecting a diffuse contamination, where Contamination and Enrichment Factor suggest low to extremely polluted sediments. Findings of a previous survey of the benthic foraminifera inhabiting Lagos Lagoon revealed diverse assemblages of benthic taxa, species-specific distribution patterns, gradients of species richness and abundance, and a disjunct distribution of agglutinated and hyaline-perforate/porcelaneous taxa along a pronounced salinity gradient. Correlation matrix analysis shows that except for Selenium, all PTE total concentrations positively correlate with mud and Total Organic Carbon (TOC) and two of the most abundant agglutinated taxa, Ammotium salsum, and Trochammina sp. 1. Moreover, both species display significant positive correlations with CrF4-CoF2-F3-F4-total-CuF4-total-NiF3-F4-total-AlF4-total-FeF3-F4-total-ZnF3-F4-total. On the other hand, both foraminifers correlate negatively with PbF4-SeF3-Setotal. The overall significant positive correlation of these PTEs suggests that they behave as micronutrients when complexed with organic matter. No significant positive correlation with none of the PTEs in any fraction was found for neither species richness nor for the most abundant hyaline perforate species (Ammonia aoteana). Some PTE fractions were found to correlate either positively or negatively with individual species, suggesting that they function as either micronutrients and/or stressors. The resulting Contamination Factor of the PTE total concentrations shows that only a few sample sites can be classified as “moderately” polluted for chromium, zinc, and copper and that all sampled sites are classified as “highly polluted” for selenium. The highest concentrations for Cr, Cu, Ni, and Zn were found towards the industrialized western part, an area that is characterized by moderate to high diversity but low abundances.more » « less
-
Abstract The electrostatic effects of protein crowding have not been systematically explored. Rather, protein crowding is generally studied with co‐solvents or crowders that are electrostatically neutral, with no methods to measure how the net charge ( Z ) of a crowder affects protein function. For example, can the activity of an enzyme be affected electrostatically by the net charge of its neighbor in crowded milieu? This paper reports a method for crowding proteins of different net charge to an enzyme via semi‐random chemical crosslinking. As a proof of concept, RNase A was crowded (at distances ≤ the Debye length) via crosslinking to different heme proteins with Z = +8.50 ± 0.04, Z = +6.39 ± 0.12, or Z = −10.30 ± 1.32. Crosslinking did not disrupt the structure of proteins, according to amide H/D exchange, and did not inhibit RNase A activity. For RNase A, we found that the electrostatic environment of each crowded neighbor had significant effects on rates of RNA hydrolysis. Crowding with cationic cytochrome c led to increases in activity, while crowding with anionic “supercharged” cytochrome c or myoglobin diminished activity. Surprisingly, electrostatic crowding effects were amplified at high ionic strength ( I = 0.201 M) and attenuated at low ionic strength ( I = 0.011 M). This salt dependence might be caused by a unique set of electric double layers at the dimer interspace (maximum distance of 8 Å, which cannot accommodate four layers). This new method of crowding via crosslinking can be used to search for electrostatic effects in protein crowding.more » « less
-
Abstract Canonical eukaryotic mRNA translation requires 5′cap recognition by initiation factor 4E (eIF4E). In contrast, many positive-strand RNA virus genomes lack a 5′cap and promote translation by non-canonical mechanisms. Among plant viruses, PTEs are a major class of cap-independent translation enhancers located in/near the 3′UTR that recruit eIF4E to greatly enhance viral translation. Previous work proposed a single form of PTE characterized by a Y-shaped secondary structure with two terminal stem-loops (SL1 and SL2) atop a supporting stem containing a large, G-rich asymmetric loop that forms an essential pseudoknot (PK) involving C/U residues located between SL1 and SL2. We found that PTEs with less than three consecutive cytidylates available for PK formation have an upstream stem-loop that forms a kissing loop interaction with the apical loop of SL2, important for formation/stabilization of PK. PKs found in both subclasses of PTE assume a specific conformation with a hyperreactive guanylate (G*) in SHAPE structure probing, previously found critical for binding eIF4E. While PTE PKs were proposed to be formed by Watson–Crick base-pairing, alternative chemical probing and 3D modeling indicate that the Watson–Crick faces of G* and an adjacent guanylate have high solvent accessibilities. Thus, PTE PKs are likely composed primarily of non-canonical interactions.