skip to main content


Title: Single Crystalline GeSe Van Der Waals Ribbons With Uniform Layer Stacking, High Carrier Mobility, and Adjustable Edge Morphology
Abstract

Performance of the group IV monochalcogenide GeSe in solar cells, electronic, and optoelectronic devices is expected to improve when high‐quality single crystalline material is used rather than polycrystalline films. Crystalline flakes represent an attractive alternative to bulk single crystals as their synthesis may be developed to be scalable, faster, and with higher overall yield. However, large – and especially large and thin – single crystal flakes are notoriously hard to synthesize. Here it is demonstrated that vapor‐liquid‐solid growth combined with direct lateral vapor‐solid incorporation produces high‐quality single crystalline GeSe ribbons with tens of micrometers size and controllable thickness. Electron microscopy shows that the ribbons exhibit perfect equilibrium (AB) van der Waals stacking order without extended defects across the entire thickness, in contrast to the conventional case of substrate‐supported flakes where material is added via layer‐by‐layer nucleation and growth on the basal plane. Electrical measurements show anisotropic transport and a high Hall mobility of 85 cm2 V−1 s−1, on par with the best single crystals to date. Growth from mixed GeSe and SnSe vapors, finally, yields ribbons with unchanged structure and composition but with jagged edges, promising for applications that rely on ample chemically active edge sites, such as catalysis or photocatalysis.

 
more » « less
Award ID(s):
1904843
PAR ID:
10544664
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Molybdenum disulfide (MoS2) transistors are a promising alternative for the semiconductor industry due to their large on/off current ratio (>1010), immunity to short-channel effects, and unique switching characteristics. MoS2 has drawn considerable interest due to its intriguing electrical, optical, sensing, and catalytic properties. Monolayer MoS2 is a semiconducting material with a direct band gap of ~1.9 eV, which can be tuned. Commercially, the aim of synthesizing a novel material is to grow high-quality samples over a large area and at a low cost. Although chemical vapor deposition (CVD) growth techniques are associated with a low-cost pathway and large-area material growth, a drawback concerns meeting the high crystalline quality required for nanoelectronic and optoelectronic applications. This research presents a lower-temperature CVD for the repeatable synthesis of large-size mono- or few-layer MoS2 using the direct vapor phase sulfurization of MoO3. The samples grown on Si/SiO2 substrates demonstrate a uniform single-crystalline quality in Raman spectroscopy, photoluminescence (PL), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy. These characterization techniques were targeted to confirm the uniform thickness, stoichiometry, and lattice spacing of the MoS2 layers. The MoS2 crystals were deposited over the entire surface of the sample substrate. With a detailed discussion of the CVD setup and an explanation of the process parameters that influence nucleation and growth, this work opens a new platform for the repeatable synthesis of highly crystalline mono- or few-layer MoS2 suitable for optoelectronic application.

     
    more » « less
  2. Abstract

    Recently, 2D electron gases have been observed in atomically thin semiconducting crystals, enabling the observation of rich physical phenomena at the quantum level within the ultimate thickness limit. However, the observation of 2D electron gases and subsequent quantum Hall effect require exceptionally high crystalline quality, rendering mechanical exfoliation as the only method to produce high‐quality 2D semiconductors of black phosphorus and indium selenide (InSe), which hinder large‐scale device applications. Here, the controlled one‐step synthesis of high‐quality 2D InSe thin films via chemical vapor transport method is reported. The carrier Hall mobility of hexagonal boron nitride (hBN) encapsulated InSe flakes can be up to 5000 cm2V−1s−1at 1.5 K, enabling to observe the quantum Hall effect in a synthesized van der Waals semiconductor. The existence of the quantum Hall effect in directly synthesized 2D semiconductors indicates a high quality of the chemically synthesized 2D semiconductors, which hold promise in quantum devices and applications with high mobility.

     
    more » « less
  3. Abstract

    The incorporation of metal-organic frameworks into advanced devices remains a desirable goal, but progress is hindered by difficulties in preparing large crystalline metal-organic framework films with suitable electronic performance. We demonstrate the direct growth of large-area, high quality, and phase pure single metal-organic framework crystals through chemical vapor deposition of a dimolybdenum paddlewheel precursor, Mo2(INA)4. These exceptionally uniform, high quality crystals cover areas up to 8600 µm2and can be grown down to thicknesses of 30 nm. Moreover, scanning tunneling microscopy indicates that the Mo2(INA)4clusters assemble into a two-dimensional, single-layer framework. Devices are readily fabricated from single vapor-phase grown crystals and exhibit reversible 8-fold changes in conductivity upon illumination at modest powers. Moreover, we identify vapor-induced single crystal transitions that are reversible and responsible for 30-fold changes in conductivity of the metal-organic framework as monitored by in situ device measurements. Gas-phase methods, including chemical vapor deposition, show broader promise for the preparation of high-quality molecular frameworks, and may enable their integration into devices, including detectors and actuators.

     
    more » « less
  4. Abstract

    The van der Waals magnets CrX3(X = I, Br, and Cl) exhibit highly tunable magnetic properties and are promising candidates for developing novel two‐dimensional (2D) spintronic devices such as magnetic tunnel junctions and spin tunneling transistors. Previous studies of the antiferromagnetic CrCl3have mainly focused on mechanically exfoliated samples. Controlled synthesis of high quality atomically thin flakes is critical for their technological implementation but has not been achieved to date. This work reports the growth of large CrCl3flakes down to monolayer thickness via the physical vapor transport technique. Both isolated flakes with well‐defined facets and long stripe samples with the trilayer portion exceeding 60 µm have been obtained. High‐resolution transmission electron microscopy studies show that the CrCl3flakes are single crystalline in the monoclinic structure, consistent with the Raman results. The room temperature stability of the CrCl3flakes decreases with decreasing thickness. The tunneling magnetoresistance of graphite/CrCl3/graphite tunnel junctions confirms that few‐layer CrCl3possesses in‐plane magnetic anisotropy and Néel temperature of 17 K. This study paves the path for developing CrCl3‐based scalable 2D spintronic applications.

     
    more » « less
  5. Abstract

    Tin (II) selenide (SnSe) is an emerging 2D material with many intriguing properties, such as record‐high thermoelectric figure of merit (ZT), purely in‐plane ferroelectricity, and excellent nonlinear optical properties. To explore these functional properties and related applications, a crucial step is to develop controllable routes to synthesize large‐area, ultrathin, and high‐quality SnSe crystals. Physical vapor deposition (PVD) constitutes a reliable method to synthesize 2D SnSe, however, effects of various growth parameters have not yet been systematically investigated, and current PVD‐synthesized flakes are often thick (>10 nm) with small lateral sizes (<10 µm). In this work, high‐quality 2D SnSe crystals are synthesized via low‐pressure PVD, which display in‐plane ferroelectric domains observed by piezoresponse force microscopy and polarization‐dependent reflection spectroscopy. Detailed studies regarding the roles of various parameters are further carried out, including substrate pre‐annealing, growth duration, temperature, and pressure, which enable to rationally optimize the growth and obtain 2D SnSe crystals with lateral sizes up to ≈23.0 µm and thicknesses down to ≈2.0 nm (3–4 layers). This work paves the way for the controlled growth of large‐area 2D SnSe, facilitating the future exploration of many interesting multiferroic properties and applications with atomic thickness.

     
    more » « less