skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Potent pollen gene regulation by DNA glycosylases in maize
Abstract Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Either one of two DNGs, MATERNAL DEREPRESSION OF R1 (MDR1) or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen-segregating mutations in both genes, we identify 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in other tissues. They are unusual in their tendency to lack introns but even more so in their TE-like methylation (teM) in coding DNA. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with the potential for extremely high expression in pollen but constitutive silencing elsewhere.  more » « less
Award ID(s):
2041384 2218712
PAR ID:
10544688
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bomblies, K (Ed.)
    Abstract DNA methylation in plants is depleted from cis-regulatory elements in and near genes but is present in some gene bodies, including exons. Methylation in exons solely in the CG context is called gene body methylation (gbM). Methylation in exons in both CG and non-CG contexts is called TE-like methylation (teM). Assigning functions to both forms of methylation in genes has proven to be challenging. Toward that end, we utilized recent genome assemblies, gene annotations, transcription data, and methylome data to quantify common patterns of gene methylation and their relations to gene expression in maize. We found that gbM genes exist in a continuum of CG methylation levels without a clear demarcation between unmethylated genes and gbM genes. Analysis of expression levels across diverse maize stocks and tissues revealed a weak but highly significant positive correlation between gbM and gene expression except in endosperm. gbM epialleles were associated with an approximately 3% increase in steady-state expression level relative to unmethylated epialleles. In contrast to gbM genes, which were conserved and were broadly expressed across tissues, we found that teM genes, which make up about 12% of genes, are mainly silent, are poorly conserved, and exhibit evidence of annotation errors. We used these data to flag teM genes in the 26 NAM founder genome assemblies. While some teM genes are likely functional, these data suggest that the majority are not, and their inclusion can confound the interpretation of whole-genome studies. 
    more » « less
  2. Abstract Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm. 
    more » « less
  3. The genomic sequences of crops continue to be produced at a frenetic pace. It remains challenging to develop complete annotations of functional genes and regulatory elements in these genomes. Chromatin accessibility assays enable discovery of functional elements; however, to uncover the full portfolio of cis-elements would require profiling of many combinations of cell types, tissues, developmental stages, and environments. Here, we explore the potential to use DNA methylation profiles to develop more complete annotations. Using leaf tissue in maize, we define ∼100,000 unmethylated regions (UMRs) that account for 5.8% of the genome; 33,375 UMRs are found greater than 2 kb from genes. UMRs are highly stable in multiple vegetative tissues, and they capture the vast majority of accessible chromatin regions from leaf tissue. However, many UMRs are not accessible in leaf, and these represent regions with potential to become accessible in specific cell types or developmental stages. These UMRs often occur near genes that are expressed in other tissues and are enriched for binding sites of transcription factors. The leaf-inaccessible UMRs exhibit unique chromatin modification patterns and are enriched for chromatin interactions with nearby genes. The total UMR space in four additional monocots ranges from 80 to 120 megabases, which is remarkably similar considering the range in genome size of 271 megabases to 4.8 gigabases. In summary, based on the profile from a single tissue, DNA methylation signatures provide powerful filters to distill large genomes down to the small fraction of putative functional genes and regulatory elements. 
    more » « less
  4. Abstract Trans-chromosomal interactions resulting in changes in DNA methylation during hybridization have been observed in several plant species. However, little is known about the causes or consequences of these interactions. Here, we compared DNA methylomes of F1 hybrids that are mutant for a small RNA biogenesis gene, Mop1 (Mediator of paramutation1), with that of their parents, wild-type siblings, and backcrossed progeny in maize (Zea mays). Our data show that hybridization triggers global changes in both trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM), most of which involved changes in CHH methylation. In more than 60% of these TCM differentially methylated regions (DMRs) in which small RNAs are available, no significant changes in the quantity of small RNAs were observed. Methylation at the CHH TCM DMRs was largely lost in the mop1 mutant, although the effects of this mutant varied depending on the location of these DMRs. Interestingly, an increase in CHH at TCM DMRs was associated with enhanced expression of a subset of highly expressed genes and suppressed expression of a small number of lowly expressed genes. Examination of the methylation levels in backcrossed plants demonstrates that both TCM and TCdM can be maintained in the subsequent generation, but that TCdM is more stable than TCM. Surprisingly, although increased CHH methylation in most TCM DMRs in F1 plants required Mop1, initiation of a new epigenetic state of these DMRs did not require a functional copy of this gene, suggesting that initiation of these changes is independent of RNA-directed DNA methylation. 
    more » « less
  5. Abstract Duplicated genes provide the opportunity for evolutionary novelty and adaptive divergence. In many cases, having more gene copies increases gene expression, which might facilitate adaptation to stressful or novel environments. Conversely, overexpression or misexpression of duplicated genes can be detrimental and subject to negative selection. In this scenario, newly duplicate genes may evade purifying selection if they are epigenetically silenced, at least temporarily, leading them to persist in populations as copy number variations (CNVs). In animals and plants, younger gene duplicates tend to have higher levels of DNA methylation and lower levels of gene expression, suggesting epigenetic regulation could promote the retention of gene duplications via expression repression or silencing. Here, we test the hypothesis that DNA methylation variation coincides with young duplicate genes that are segregating as CNVs in six populations of the three‐spined stickleback that span a salinity gradient from 4 to 30 PSU. Using reduced‐representation bisulfite sequencing, we found DNA methylation and CNV differentiation outliers rarely overlapped. Whereas lineage‐specific genes and young duplicates were found to be highly methylated, just two gene CNVs showed a significant association between promoter methylation level and copy number, suggesting that DNA methylation might not interact with CNVs in our dataset. If most new duplications are regulated for dosage by epigenetic mechanisms, our results do not support a strong contribution from DNA methylation soon after duplication. Instead, our results are consistent with a preference to duplicate genes that are already highly methylated. 
    more » « less