The smart parking industry continues to evolve as an increasing number of cities struggle with traffic congestion and inadequate parking availability. For urban dwellers, few things are more irritating than anxiously searching for a parking space. Research results show that as much as 30% of traffic is caused by drivers driving around looking for parking spaces in congested city areas. There has been considerable activity among researchers to develop smart technologies that can help drivers find a parking spot with greater ease, not only reducing traffic congestion but also the subsequent air pollution. Many existing solutions deploy sensors in every parking spot to address the automatic parking spot detection problems. However, the device and deployment costs are very high, especially for some large and old parking structures. A wide variety of other technological innovations are beginning to enable more adaptable systems-including license plate number detection, smart parking meter, and vision-based parking spot detection. In this paper, we propose to design a more adaptable and affordable smart parking system via distributed cameras, edge computing, data analytics, and advanced deep learning algorithms. Specifically, we deploy cameras with zoom-lens and motorized head to capture license plate numbers by tracking the vehicles when they enter or leave the parking lot; cameras with wide angle fish-eye lens will monitor the large parking lot via our custom designed deep neural network. We further optimize the algorithm and enable the real-time deep learning inference in an edge device. Through the intelligent algorithm, we can significantly reduce the cost of existing systems, while achieving a more adaptable solution. For example, our system can automatically detect when a car enters the parking space, the location of the parking spot, and precisely charge the parking fee and associate this with the license plate number. 
                        more » 
                        « less   
                    
                            
                            Mobile Application for Identifying Anomalous Behavior and Conducting Time Series Analysis Using Heterogeneous Data
                        
                    
    
            Understanding anomalous behavior and spatial changes in an urban parking area can enhance decision-making and situational awareness insights for sustainable urban parking management. Decision-making relies on data that comes in overwhelming velocity and volume, that one cannot comprehend without some layer of analysis and visualization. This work presents a mobile application that performs time series analysis and anomaly detection on parking lot data for decision-making. The mobile application allows users to add pins in the parking lot and analyze the pin data over a period of time. Our approach uses parking pins to identify each vehicle and then collect specific data, such as temporal variables like latitude, longitude, time, date, and text (information from the license plate), as well as images and videos shot at the location. Users have the option of placing pins at the location where their car is parked, and the information collected can be used for time series analysis. By examining the data pattern, we may quickly identify vehicles parked in restricted spaces but without authorization and vehicles parked in disabled spaces but owned by regular users. This time series analysis enables the extraction of meaningful insights, making it useful in the identification of recurring patterns in parking lot occupancy over time. This information aids in predicting future demands, enabling parking administrators to allocate resources efficiently during peak hours and optimize space usage. It can be used in detecting irregularities in parking patterns, aiding in the prompt identification of unauthorized or abnormal parking and parking violations which includes parking of the wrong type of vehicle, and parking at restricted or reserved areas. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10544793
- Editor(s):
- Wei, J; Margetis, G eds
- Publisher / Repository:
- Human-Centered Design, Operation and Evaluation of Mobile Communications. HCII 2024. Lecture Notes in Computer Science
- Date Published:
- Journal Name:
- Virtual, Augmented and Mixed Reality. HCII 2024. Lecture Notes in Computer Science
- Edition / Version:
- 14737
- ISSN:
- 978-3-031-61046-2
- Subject(s) / Keyword(s):
- Heterogeneous Data Time Series Analysis Anomalous Behavior Data Visualization Object Detection
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The goal of this study was to analyze the impact of private autonomous vehicles (PAVs), specifically their near-activity location travel patterns, on vehicle miles traveled (VMT). The study proposes an integrated mode choice and simulation-based parking assignment model, along with an iterative solution approach, to analyze the impacts of PAVs on VMT, mode choice, parking lot usage, and other system performance measures. The dynamic simulation-based parking assignment model determines the parking location choice of each traveler as a function of the spatial–temporal demand for parking from the mode choice model, whereas the multinomial logit mode choice model determines mode splits based on the costs and service quality of each travel mode coming, in part, from the parking assignment model. The paper presents a case study to illustrate the power of the modeling framework. The case study varies the percentage of persons with a private vehicle (PV) who own a PAV versus a private conventional vehicle (PCV). The results indicated that PAV owners traveled an extra 0.11 to 1.51 mi compared with PCV owners on average, and the PV mode share was significantly higher for PAV owners. Therefore, as PCVs are converted into PAVs in the future, the results indicate substantial increases in VMT near activity destinations. However, the results also indicated that adjusting parking fees and redistributing parking lot capacities could reduce VMT. The significant increase in VMT from PAVs implies that planners should develop policies to reduce PAV deadheading miles near activity locations, as the automated era comes closer.more » « less
- 
            A study was undertaken into using unmanned aerial vehicles or drones to inspect the condition of a range of transport infrastructure. A road intersection, bridge and railway crossing in the USA were each inspected using two different types of drone. Machine-learning-based feature-identification techniques, developed in an earlier case study of a car parking lot, were then used to extract information automatically from the remotely captured photogrammetric data for each asset. The findings and analysis results will help to optimise future transportation infrastructure health monitoring using unmanned aerial vehicles.more » « less
- 
            One of the most popular location privacy-preserving mechanisms applied in location-based services (LBS) is location obfuscation, where mobile users are allowed to report obfuscated locations instead of their real locations to services. Many existing obfuscation approaches consider mobile users that can move freely over a region. However, this is inadequate for protecting the location privacy of vehicles, as their mobility is restricted by external factors, such as road networks and traffic flows. This auxiliary information about external factors helps an attacker to shrink the search range of vehicles' locations, increasing the risk of location exposure. In this paper, we propose a vehicle traffic flow aware attack that leverages public traffic flow information to recover a vehicle's real location from obfuscated location. As a countermeasure, we then develop an adaptive strategy to obfuscate a vehicle's location by a "fake" trajectory that follows a realistic traffic flow. The fake trajectory is designed to not only hide the vehicle's real location but also guarantee the quality of service (QoS) of LBS. Our experimental results demonstrate that 1) the new threat model can accurately track vehicles' real locations, which have been obfuscated by two state-of-the-art algorithms, and 2) the proposed obfuscation method can effectively protect vehicles' location privacy under the new threat model without compromising QoS.more » « less
- 
            null (Ed.)Spot-level parking availability information (the availability of each spot in a parking lot) is in great demand, as it can help reduce time and energy waste while searching for a parking spot. In this article, we propose a crowdsensing system called SpotE that can provide spot-level availability in a parking lot using drivers’ smartphone sensors. SpotE only requires the sensor data from drivers’ smartphones, which avoids the high cost of installing additional sensors and enables large-scale outdoor deployment. We propose a new model that can use the parking search trajectory and final destination (e.g., an exit of the parking lot) of a single driver in a parking lot to generate the probability profile that contains the probability of each spot being occupied in a parking lot. To deal with conflicting estimation results generated from different drivers, due to the variance in different drivers’ parking behaviors, a novel aggregation approach SpotE-TD is proposed. The proposed aggregation method is based on truth discovery techniques and can handle the variety in Quality of Information of different vehicles. We evaluate our proposed method through a real-life deployment study. Results show that SpotE-TD can efficiently provide spot-level parking availability information with a 20% higher accuracy than the state-of-the-art.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    