skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geographical Server Relocation: Opportunities and Challenges
The enormous growth of AI computing has led to a surging demand for electricity. To stem the resulting energy cost and environmental impact, this paper explores opportunities enabled by the increasing hardware heterogeneity and introduces the concept of Geographical Server Relocation (GSR). Specifically, GSR physically balances the available AI servers across geographically distributed data centers subject to AI computing demand and power capacity constraints in each location. The key idea of GSR is to relocate older and less energy-efficient servers to regions with more renewables, better water efficiencies and/or lower electricity prices. Our case study demonstrates that, even with modest flexibility of relocation, GSR can substantially reduce the total operational environmental footprints and operation costs of AI computing. We conclude this paper by discussing major challenges of GSR, including service migration, software management, and algorithms.  more » « less
Award ID(s):
2324941 2007115
PAR ID:
10544904
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
2024 HotCarbon Workshop on Sustainable Computer Systems
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The remarkable progress in artificial intelligence (AI) has ushered in a new era characterized by models with billions of parameters, enabling extraordinary capabilities across diverse domains. However, these achievements come at a significant cost in terms of memory and energy consumption. The growing demand for computational resources raises grand challenges for the sustainable development of energy-efficient AI systems. This paper delves into the paradigm of memory-based computing as a promising avenue to address these challenges. By capitalizing on the inherent characteristics of memory and its efficient utilization, memory-based computing offers a novel approach to enhance AI performance while reducing the associated energy costs. Our paper systematically analyzes the multifaceted aspects of this paradigm, highlighting its potential benefits and outlining the challenges it poses. Through an exploration of various methodologies, architectures, and algorithms, we elucidate the intricate interplay between memory utilization, computational efficiency, and AI model complexity. Furthermore, we review the evolving area of hardware and software solutions for memory-based computing, underscoring their implications for achieving energy-efficient AI systems. As AI continues its rapid evolution, identifying the key challenges and insights presented in this paper serve as a foundational guide for researchers striving to navigate the complex field of memory-based computing and its pivotal role in shaping the future of energy-efficient AI. 
    more » « less
  2. Smart Servers, Smarter Speed Scaling: A Decentralized Algorithm for Data Center Efficiency A team of researchers from Georgia Tech and the University of Minnesota has introduced a cutting-edge algorithm designed to optimize energy use in large-scale data centers. As detailed in their paper “Distributed Rate Scaling in Large-Scale Service Systems,” the team developed a decentralized method allowing each server to adjust its processing speed autonomously without the need for communication or knowledge of system-wide traffic. The algorithm uses idle time as a local signal to guide processing speed, ensuring that all servers converge toward a globally optimal performance rate. This innovation addresses a critical issue in modern computing infrastructure: balancing energy efficiency with performance under uncertainty and scale. The authors demonstrate that their approach not only stabilizes the system but achieves asymptotic optimality as the number of servers increases. The work is poised to significantly reduce energy consumption in data centers, which are projected to account for up to 8% of U.S. electricity use by 2030. 
    more » « less
  3. Abstract Renewable energy sources such as solar and wind produce electricity intermittently, creating challenges in balancing electricity supply and demand for increasingly renewable‐dominated grids. This is driving efforts to increase energy storage infrastructure, such as pumped hydroelectric power storage (pumped storage). In this research, we examine environmental justice issues in a case study of a proposed pumped storage facility in Goldendale, Washington, which has been highly controversial and actively contested by a coalition of Indigenous and environmental communities. Drawing from frameworks of political ecology, just transitions, and Indigenous environmental justice, we focus on processes of consultation and engagement around permitting as a key arena for environmental justice contestation, and critically examine the driving assumptions behind the project. Despite popular framings of renewable energy infrastructures as new and green, we argue that the environmental justice impacts of this and similar projects represent continuity with past patterns of settler colonialism and extractive development. 
    more » « less
  4. Space cooling constitutes >10% of worldwide electricity consumption and is anticipated to rise swiftly due to intensified heatwaves under emerging climate change. The escalating electricity demand for cooling services will challenge already stressed power grids, especially during peak times of demand. To address this, the adoption of demand response to adjust building energy use on the end-user side becomes increasingly important to adapt future smart buildings with rapidly growing renewable energy sources. However, existing demand response strategies predominantly explore sensible cooling energy as flexible building load while neglecting latent cooling energy, which constitutes significant portions of total energy use of buildings in humid climates. Hence, this paper aims to evaluate the demand response potential by adjusting latent cooling energy through ventilation control for typical medium commercial office buildings in four representative cities across different humid climate zones, i.e., Miami, Huston, Atlanta, and New York in the United States (US). As the first step, the sensible heat ratio, defined as sensible cooling load to total building load (involving both sensible and latent load), in different humid climates are calculated. Subsequently, the strategy to adjust building latent load through ventilation control (LLVC) is explored and implemented for demand response considering the balance of energy shifting, indoor air quality, and energy cost. Results reveal that adjusting building ventilation is capable of achieving 30%–40% Heating, Ventilation, and Air-conditioning (HVAC) cooling demand flexibility during HVAC operation while among this, the latent cooling energy contributes 56% ~ 66.4% to the overall demand flexibility. This work provides a feasible way to improve electricity grid flexibility in humid climates, emphasizing the significant role of adjusting latent cooling energy in building demand response. 
    more » « less
  5. If a trader could predict price changes in the stock market better than other traders, she would make a fortune. Similarly in the electricity market, a trader that could predict changes in the electricity load, and thus electricity prices, would be able to make large profits. Predicting price changes in the electricity market better than other market participants is hard, but in this paper, we show that attackers can manipulate the electricity prices in small but predictable ways, giving them a competitive advantage in the market. Our attack is possible when the adversary controls a botnet of high wattage devices such as air conditioning units, which are able to abruptly change the total demand of the power grid. Such attacks are called Manipulation of Demand via IoT (MaDIoT) attacks. In this paper, we present a new variant of MaDIoT and name it Manipulation of Market via IoT (MaMIoT). MaMIoT is the first energy market manipulation cyberattack that leverages high wattage IoT botnets to slightly change the total demand of the power grid with the aim of affecting the electricity prices in the favor of specific market players. Using real-world data obtained from two major energy markets, we show that MaMIoT can significantly increase the profit of particular market players or financially damage a group of players depending on the motivation of the attacker. 
    more » « less