Green hydrogen, produced using renewables through electrolysis, can be used to reduce emissions in the hard-to-abate industrial sector. Efficient production and large-scale deployment require storage to mitigate electrolyzer degradation and ensure stable hydrogen supply. This paper explores the impacts and trade-offs of battery and hydrogen storage in off-grid wind-to-hydrogen systems, considering degradation of batteries and electrolyzers. Utilizing an optimization model, we examine system performance and costs over a wide range of storage capacities and wind profiles. Our results show that batteries smooth short-term fluctuations and minimize electrolyzer degradation but can experience significant degradation resulting from frequent charge/discharge cycles. Conversely, hydrogen storage provides long-term energy buffering, essential for sustained hydrogen production, but can increase electrolyzer cycling and degradation. Combining battery and hydrogen storage enhances system reliability, reduces component degradation, and reduces operational costs. This highlights the importance of strategic storage investments to improve the performance and costs of green hydrogen systems.
more »
« less
Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future
In recent years, global efforts towards a future with sustainable energy have intensified the development of renewable energy sources (RESs) such as offshore wind, solar photovoltaics (PVs), hydro, and geothermal. Concurrently, green hydrogen, produced via water electrolysis using these RESs, has been recognized as a promising solution to decarbonizing traditionally hard-to-abate sectors. Furthermore, hydrogen storage provides a long-duration energy storage approach to managing the intermittency of RESs, which ensures a reliable and stable electricity supply and supports electric grid operations with ancillary services like frequency and voltage regulation. Despite significant progress, the hydrogen economy remains nascent, with ongoing developments and persistent uncertainties in economic, technological, and regulatory aspects. This paper provides a comprehensive review of the green hydrogen value chain, encompassing production, transportation logistics, storage methodologies, and end-use applications, while identifying key research gaps. Particular emphasis is placed on the integration of green hydrogen into both grid-connected and islanded systems, with a focus on operational strategies to enhance grid resilience and efficiency over both the long and short terms. Moreover, this paper draws on global case studies from pioneering green hydrogen projects to inform strategies that can accelerate the adoption and large-scale deployment of green hydrogen technologies across diverse sectors and geographies.
more »
« less
- Award ID(s):
- 2121242
- PAR ID:
- 10544922
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Energies
- Volume:
- 17
- Issue:
- 16
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 4148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Green hydrogen produced using renewable electricity could play an important role in a clean energy future. This paper seeks to analyze the techno-economic performance of integrated wind and hydrogen systems under different conditions. A co-located wind and hydrogen hybrid system is optimized to reduce the total system cost. We have adopted and improved a state-of-the-art techno-economic tool REopt, developed by the National Renewable Energy Laboratory (NREL), for optimal planning of the integrate energy system (IES). In addition to wind and electrolyzer components, we have also considered battery energy storage, hydrogen tank, and hydrogen fuel cell in the IES. The results show that (i) adding electrolyzers to the grid-connected wind energy system could reduce the total system cost by approximately 8.9%, and (ii) adding electrolyzers, hydrogen tank, and hydrogen fuel cells could reduce the total system cost by approximately 30%.more » « less
-
The Battery Management System (BMS) plays a crucial role in modern energy storage technologies, ensuring battery safety, performance, and longevity. However, as the BMS becomes more sophisticated and interconnected, it faces increasing cybersecurity challenges that can lead to catastrophic failures and safety hazards. This paper provides a comprehensive overview of cyberattacks targeting both traditional and wireless BMS. It explores various attack vectors, including malware injection, electromagnetic interference (EMI), temperature sensing manipulation, sensor malfunctioning and fault injection, and jamming attacks on modern BMS. Through threat modeling and vulnerability analysis, this paper examines the potential impacts on BMS functionality, safety, and performance. We highlight vulnerabilities associated with different BMS architectures and components, emphasizing the need for robust cybersecurity measures to protect against emerging threats. Cybersecurity measures are essential to protect the system from potential threats that could trigger false alarms, cause malfunctions, or lead to dangerous failures. Unauthorized access or tampering with the BMS can disrupt its fault response mechanisms, jeopardizing system performance and associated resources. Key cybersecurity strategies include intrusion detection systems (IDS), crypto-based authentication, secure firmware updates, and hardware-based security mechanisms such as trusted platform modules (TPMs). These measures strengthen BMS resilience by preventing unauthorized access and ensuring data integrity. Our findings are essential for mitigating risks in various sectors, including electric vehicles (EVs), renewable energy, and grid storage. They underscore the importance of ongoing research and development of adaptive security strategies to safeguard BMS against evolving cyber threats. Additionally, we propose a trust mechanism that secures the connection between input sensors and the BMS, ensuring the reliability and safety of battery-powered systems across various industries.more » « less
-
Most large-scale ammonia production typically relies on natural gas or coal, which causes harmful carbon pollution to enter the atmosphere. The viability of a small-scale “green” ammonia plant is investigated where renewable electricity is used to provide hydrogen and nitrogen via electrolysis and air liquefaction, respectively, to a Haber-Bosch system to synthesize ammonia. A green ammonia plant can serve as a demandresponsive load to the electricity distribution system and provide long-term energy storage through chemical energy storage in ammonia. A coordinated operational model of an electricity distribution system and an electricity-run ammonia plant is proposed in this paper. Case studies are performed on a modified PG&E 69-node electricity distribution system coupled with a small-scale ammonia plant. Results indicate the ammonia plant can adequately serve as a demand response resource and positively impact the distribution locational marginal price (DLMP).more » « less
-
null (Ed.)The German Energiewende is the planned transition by Germany to a low carbon, environmentally sound, reliable, and affordable energy supply. This paper reports on a U.S. faculty international study program, which took place in May 2019, to explore the intersection of the German renewable energy and energy storage sectors. The international program included eleven instructional faculty from throughout the United States on a two-week learning and discovery experience starting in Frankfurt and ending in Munich, Germany. This paper provides an overview of the German renewable energy and energy storage landscape in comparison to the United States. Emphasis is placed on differences related to the historical context, policy and regulatory differences, and technology advances in the renewable energy and energy storage sectors. The comparison of Germany and the U.S. provides a nice example for faculty and students to investigate how technology readiness, regulatory policies, and economic forces all intersect to establish markets for a multinational industry. Findings from the international program and their impact on the education practices of faculty in the United States are provided, with a focus on academic curriculum, teaching practices, and career pathways for the energy industry.more » « less
An official website of the United States government

