The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.
more »
« less
Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing
In the laser powder bed fusion additive manufacturing process, the quality of fabrications is intricately tied to the laser–matter interaction, specifically the formation of the melt pool. This study experimentally examined the intricacies of melt pool characteristics and surface topography across diverse laser powers and speeds via single-track laser scanning on a bare plate and powder bed for 316L stainless steel. The results reveal that the presence of a powder layer amplifies melt pool instability and worsens irregularities due to increased laser absorption and the introduction of uneven mass from the powder. To provide a comprehensive understanding of melt pool dynamics, a high-fidelity computational model encompassing fluid dynamics, heat transfer, vaporization, and solidification was developed. It was validated against the measured melt pool dimensions and morphology, effectively predicting conduction and keyholing modes with irregular surface features. Particularly, the model explained the forming mechanisms of a defective morphology, termed swell-undercut, at high power and speed conditions, detailing the roles of recoil pressure and liquid refilling. As an application, multiple-track simulations replicate the surface features on cubic samples under two distinct process conditions, showcasing the potential of the laser–matter interaction model for process optimization.
more »
« less
- Award ID(s):
- 2029425
- PAR ID:
- 10545046
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Micromachines
- Volume:
- 15
- Issue:
- 2
- ISSN:
- 2072-666X
- Page Range / eLocation ID:
- 170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This letter presents the design and experimental validation of a real-time image-based feedback control system for metal laser powder bed fusion (LPBF). A coaxial melt pool video stream is used to control laser power in real-time at 2 kHz. Modeling of the melt pool image response to changes in the input laser power is presented. Based on this identified model, a real-time feedback controller is implemented experimentally on a single track and part scales. On a single-track scale, the controller successfully tracks a time-varying melt pool reference. On a part-level scale, the controller successfully regulates the melt pool image signature to the desired reference value, reducing layer-to-layer signal variation and eliminating within-layer signal drift.more » « less
-
Abstract Powder bed fusion (PBF) is an additive manufacturing process in which laser heat liquefies blown powder particles on top of a powder bed, and cooling solidifies the melted powder particles. During this process, the laser beam heat interacts with the powder causing thermal emission and affecting the melt pool. This paper aims to predict heat emission in PBF by harnessing the strengths of recurrent neural networks. Long short-term memory (LSTM) networks are developed to learn from sequential data (emission readings), while the learning is guided by process physics including laser power, laser speed, layer number, and scanning patterns. To reduce the computational efforts on model training, the LSTM models are integrated with a new approach for down-sampling the pyrometry raw data and extracting useful statistical features from raw data. The structure and hyperparameters of the LSTM model reflect several iterations of tuning based on the training on the pyrometer readings data. Results reveal useful knowledge on how raw pyrometer data should be processed to work the best with LSTM, how physics features are informative in predicting overheating, and the effectiveness of physics-guided LSTM in emission prediction.more » « less
-
Abstract Challenge 3 of the 2022 NIST additive manufacturing benchmark (AM Bench) experiments asked modelers to submit predictions for solid cooling rate, liquid cooling rate, time above melt, and melt pool geometry for single and multiple track laser powder bed fusion process using moving lasers. An in-house developedAdditiveManufacturingComputationalFluidDynamics code (AM-CFD) combined with a cylindrical heat source is implemented to accurately predict these experiments. Heuristic heat source calibration is proposed relating volumetric energy density (ψ) based on experiments available in the literature. The parameters of the heat source of the computational model are initially calibrated based on a Higher Order Proper Generalized Decomposition- (HOPGD) based surrogate model. The prediction using the calibrated heat source agrees quantitatively with NIST measurements for different process conditions (laser spot diameter, laser power, and scan speed). A scaling law based on keyhole formation is also utilized in calibrating the parameters of the cylindrical heat source and predicting the challenge experiments. In addition, an improvement on the heat source model is proposed to relate the Volumetric Energy Density (VEDσ) to the melt pool aspect ratio. The model shows further improvement in the prediction of the experimental measurements for the melt pool, including cases at higher VEDσ. Overall, it is concluded that the appropriate selection of laser heat source parameterization scheme along with the heat source model is crucial in the accurate prediction of melt pool geometry and thermal measurements while bypassing the expensive computational simulations that consider increased physics equations.more » « less
-
Reliable process control for the laser powder bed fusion process, especially at the melt pool scale, remains an open challenge. One of the reasons for this is the lack of suitable control-oriented models and associated control design strategies. To address this issue, this paper (1) identifies an empirical control-oriented model of geometry-dependent melt pool behavior and (2) experimentally demonstrates melt pool regulation with a feedforward controller for laser power based on this model. First, the study establishes that the melt pool signature increases as the scan lines decrease in length. An empirical model of this behavior is developed and validated on different geometries at varying laser power levels. Second, the model is used to design a line-to-line feedforward controller that provides an optimal laser power sequence for a given geometry. Finally, this controller is validated experimentally and is demonstrated to suppress the in-layer geometry-related melt pool signal deviations for different test geometriesmore » « less
An official website of the United States government

