CONTEXT Sub-Saharan Africa (SSA) has the climatic and biophysical potential to grow the crops it needs to meet rapidly growing food demand; however, agricultural productivity remains low. While potential maize yields in Zambia are 9 t per hectare (t/ha), the average farmer produces only 1–2. OBJECTIVE We evaluate the contribution of responses to weather risk to that gap by decomposing the yield gap in maize in Zambia. While we know that improved seed and fertilizer can expand yield and profit, they may also increase the variance of yield under different weather outcomes, reducing their adoption. METHODS We use a novel approach combining crop modeling and statistical analysis of survey data to obtain the yield gap components in Zambia driven by input cost and input risk. We use a crop model to simulate district-level marginal effects of fertilizer and seed maturity choice on the mean and variance of expected yield and profit under all-weather outcomes for each district for the past 30 years. We compare input levels that maximize expected yield to those that maximize expected profit and maximize the expected mean-variance trade-off assuming risk-aversion. To determine how much farmers' input choices are made to reduce risk, we then quantify differences in the expected riskiness of inputs by district. RESULTS AND CONCLUSIONS We find approximately one-quarter of the yield gap can be explained by risk-reducing behavior, albeit with a substantial geographic variation. Given this finding, under present conditions, we expect that the average maximum yield that farmers can obtain without increasing risk is 6.75 t/ha compared to a potential profit-maximizing level of 8.84 t/ha. SIGNIFICANCE The risk-related yield gap is only expected to increase with weather extremes driven by climate change. Promoting “one-size-fits all” solutions to closing the yield gap could underestimate the effect of risk mitigation on agricultural production while increasing farmers' risk exposure.
more »
« less
How much control do smallholder maize farmers have over yield?
Smallholder agriculture is critical for current and future food security, yet quantifying the sources of smallholder yield variance remains a major challenge. Attributing yield variance to farmer management, as opposed to soil and weather constraints, is an important step to understanding the impact of farmer decision-making, in a context where smallholder farmers use a wide range of management practices and may have limited access to fertilizer. This study used a process-based crop model to simulate smallholder maize (Zea mays) yield at the district-level in Zambia and quantify the percent of yield variance (effect size) attributed to soil, weather, and three management inputs (cultivar, fertilizer, planting date). Effect sizes were calculated via an ANOVA variance decomposition. Further, to better understand the treatment effects of management practices, effect sizes were calculated both for all years combined and for individual years. We found that farmer management decisions explained 27–82 % of total yield variance for different agro-ecological regions in Zambia, primarily due to fertilizer impact. Fertilizer explained 45 % of yield variance for the average district, although its effect was much larger in northern districts of Zambia that typically have higher precipitation, where it explained 72 % of yield variance on average. When fixing a specific fertilizer amount, the “low-cost” management options of varying planting dates and cultivars explained 20–28 % of yield variance, with some regional variation. To better understand why management practices impact yield more in particular years, we performed a correlation analysis comparing yearly management effect sizes with four meteorologically based variables: total growing season precipitation, rainy season onset, extreme heat degree days, and longest dry spell. Results showed that fertilizer’s impact generally increased under favorable weather conditions, and planting date’s impact increased under adverse weather conditions. This study demonstrates how a national yield variance decomposition can be used to understand where specific management interventions would have a greater impact and can provide policymakers with quantification of soil, weather, and management effects. In addition, the variance composition can easily be adapted to a different range of management inputs, such as other cultivars or fertilizer quantities, and can also be used to assess the effect size of management adaptations under climate change.
more »
« less
- PAR ID:
- 10545081
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Field crops research
- Volume:
- 301
- ISSN:
- 1872-6852
- Page Range / eLocation ID:
- 109014
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Climate change will ultimately result in higher surface temperature and more variable precipitation, negatively affecting agricultural productivity. To sustain the agricultural production in the face of climate change, adaptive agricultural management or best management practices (BMPs) are needed. The currently practiced BMPs include crop rotation, early planting, conservation tillage, cover crops, effective fertilizer use, and so on. This research investigated the agricultural production of BMPs in response to climate change for a Hydrologic Unit Code12 sub-watershed of Choctawhatchee Watershed in Alabama, USA. The dominating soil type of this region was sandy loam and loamy sand soil. Agricultural Production Systems sIMulator and Cropping Systems Simulation Model were used to estimate the agricultural production. Representative Concentration Pathway (RCP) 4.5 and RCP8.5 that projected a temperature increase of 2.3℃ and 4.7℃ were used as climate scenarios. The research demonstrated that crop rotation had positive response to climate change. With peanuts in the rotation, a production increase of 105% was observed for cotton. There was no consistent impact on crop yields by early planting. With selected peanut-cotton rotations, 50% reduced nitrogen fertilizer use was observed to achieve comparable crop yields. In response to climate change, crop rotation with legume incorporation is thus suggested, which increased crop production and reduced fertilizer use.more » « less
-
While conservation practices promote soil health and reduce the negative environmental effects from agricultural production, their adoption rates are generally low. To facilitate farmer adoption, we carried out a survey to identify potential challenges faced by farmers regarding conservation tillage and cover crop adoption in the western margin of the US Corn Belt. We found farmers' top two concerns regarding conservation tillage were delayed planting, caused by slow soil warming in spring, and increased dependence on herbicide and fungicides. Narrow planting window and lack of time/labor were perceived by farmers as the two primary challenges for cover crop adoption. Some sense of place factors, including the commonly included dimensions of attachment, identity and dependence, played a role in farmers' perceived challenges. For example, respondents more economically dependent on farming perceived greater challenges. We found that farmers' challenge perceptions regarding reduced yield and lack of time/labor significantly decreased as years of usage increased, implying that time and experience could dilute some challenges faced by farmers. Our findings indicate that social network use, technical guidance and economic subsidies are likely to address the concerns of farmers and facilitate their adoption of conservation practices.more » « less
-
Abstract. Farmers around the world time the planting of their crops to optimize growing season conditions and choose varieties that grow slowly enough to take advantage of the entire growing season while minimizing the risk of late-season kill. As climate changes, these strategies will be an important component of agricultural adaptation. Thus, it is critical that the global models used to project crop productivity under future conditions are able to realistically simulate growing season timing. This is especially important for climate- and hydrosphere-coupled crop models, where the intra-annual timing of crop growth and management affects regional weather and water availability. We have improved the crop module of the Community Land Model (CLM) to allow the use of externally specified crop planting dates and maturity requirements. In this way, CLM can use alternative algorithms for future crop calendars that are potentially more accurate and/or flexible than the built-in methods. Using observation-derived planting and maturity inputs reduces bias in the mean simulated global yield of sugarcane and cotton but increases bias for corn, spring wheat, and especially rice. These inputs also reduce simulated global irrigation demand by 15 %, much of which is associated with particular regions of corn and rice cultivation. Finally, we discuss how our results suggest areas for improvement in CLM and, potentially, similar crop models.more » « less
-
null (Ed.)Technical best management practices are the dominant approach promoted to mitigate agriculture’s significant contributions to environmental degradation. Yet very few social science studies have examined how farmers actually use these practices. This study focuses on the outcomes of farmers’ technical best management practice adoption related to synthetic nitrogen fertilizer management in the context of Midwestern corn agriculture in the United States. Moving beyond predicting the adoption of nitrogen best management practices, I use structural equation modeling and data from a sample of over 2500 farmers to analyze how the number of growing season applications a farmer uses influences the rate at which synthetic nitrogen is applied at the field-level. I find that each additional application of N during the growing season is associated with an average increase of 2.4 kg/ha in farmers’ average N application rate. This result counters expectation for the outcome of this practice and may suggest that structural pressures are leading farmers to use additional growing season applications to ensure sufficiently high N rates, rather than allowing them to reduce rates. I conclude by discussing the implication of this study for future research and policy.more » « less