This article introduces a novel concatenated coding scheme called sparse regression LDPC (SR-LDPC) codes. An SR-LDPC code consists of an outer non-binary LDPC code and an inner sparse regression code (SPARC), whose respective field size and section sizes are equal. For such codes, an efficient decoding algorithm is proposed based on approximate message passing (AMP) that dynamically shares soft information between inner and outer decoders. This dynamic exchange of information is facilitated by a denoiser that runs belief propagation (BP) on the factor graph of the outer LDPC code within each AMP iteration. It is shown that this BP denoiser falls within the framework of non-separable denoising functions and subsequently, that state evolution holds for the proposed AMP-BP algorithm. Leveraging the rich structure of SR-LDPC codes, this article proposes an efficient low-dimensional approximate state evolution recursion that can be used for efficient hyperparameter tuning, thus paving the way for future work on optimal code design. Finally, numerical simulations demonstrate that SR-LDPC codes outperform contemporary codes over the AWGN channel for parameters of practical interest. SR-LDPC codes are shown to be viable means for obtaining shaping gains over the AWGN channel.
more »
« less
On Sparse Regression LDPC Codes
Iterative decoding of graph-based codes and sparse recovery through approximate message passing (AMP) are two research areas that have seen monumental progress in recent decades. Inspired by these advances, this article introduces sparse regression LDPC codes (SR-LDPC codes) and their decoding. Sparse regression codes (SPARCs) are a class of error correcting codes that build on ideas from compressed sensing and can be decoded using AMP. In certain settings, SPARCs are known to achieve capacity; yet, their performance suffers at finite block lengths. Likewise, low-density parity-check (LDPC) codes can be decoded efficiently using belief propagation and can also be capacity achieving. This article introduces a novel concatenated coding structure that combines an LDPC outer code with a SPARC-inspired inner code. Efficient decoding for such a code can be achieved using AMP with a denoiser that performs belief propagation on the factor graph of the outer LDPC code. The proposed framework exhibits performance improvements over SPARCs and standard LDPC codes for finite block lengths and results in a steep waterfall in error performance, a phenomenon not observed in uncoded SPARCs.
more »
« less
- Award ID(s):
- 2131106
- PAR ID:
- 10545208
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-7554-9
- Page Range / eLocation ID:
- 2350 to 2355
- Subject(s) / Keyword(s):
- Error Correction Codes LDPC Codes Sparse Regression Codes Iterative Decoding Message Passing Approximate Message Passing Belief Propagation
- Format(s):
- Medium: X
- Location:
- Taipei, Taiwan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, a method for joint source-channel coding (JSCC) based on concatenated spatially coupled low-density parity-check (SC-LDPC) codes is investigated. A construction consisting of two SC-LDPC codes is proposed: one for source coding and the other for channel coding, with a joint belief propagation-based decoder. Also, a novel windowed decoding (WD) scheme is presented with significantly reduced latency and complexity requirements. The asymptotic behavior for various graph node degrees is analyzed using a protograph-based Extrinsic Information Transfer (EXIT) chart analysis for both LDPC block codes with block decoding and for SC-LDPC codes with the WD scheme, showing robust performance for concatenated SC-LDPC codes. Simulation results show a notable performance improvement compared to existing state-of-the-art JSCC schemes based on LDPC codes with comparable latency and complexity constraints.more » « less
-
null (Ed.)Neural Normalized MinSum (N-NMS) decoding delivers better frame error rate (FER) performance on linear block codes than conventional normalized MinSum (NMS) by assigning dynamic multiplicative weights to each check-to-variable message in each iteration. Previous N-NMS efforts have primarily investigated short-length block codes (N < 1000), because the number of N-NMS parameters to be trained is proportional to the number of edges in the parity check matrix and the number of iterations, which imposes am impractical memory requirement when Pytorch or Tensorflow is used for training. This paper provides efficient approaches to training parameters of N-NMS that support N-NMS for longer block lengths. Specifically, this paper introduces a family of neural 2-dimensional normalized (N-2D-NMS) decoders with with various reduced parameter sets and shows how performance varies with the parameter set selected. The N-2D-NMS decoders share weights with respect to check node and/or variable node degree. Simulation results justify this approach, showing that the trained weights of N-NMS have a strong correlation to the check node degree, variable node degree, and iteration number. Further simulation results on the (3096,1032) protograph-based raptor-like (PBRL) code show that N-2D-NMS decoder can achieve the same FER as N-NMS with significantly fewer parameters required. The N-2D-NMS decoder for a (16200,7200) DVBS-2 standard LDPC code shows a lower error floor than belief propagation. Finally, a hybrid decoding structure combining a feedforward structure with a recurrent structure is proposed in this paper. The hybrid structure shows similar decoding performance to full feedforward structure, but requires significantly fewer parameters.more » « less
-
null (Ed.)This paper proposes a finite-precision decoding method for low-density parity-check (LDPC) codes that features the three steps of Reconstruction, Computation, and Quantization (RCQ). Unlike Mutual-Information-Maximization Quantized Belief Propagation (MIM-QBP), RCQ can approximate either belief propagation or Min-Sum decoding. MIM-QBP decoders do not work well when the fraction of degree-2 variable nodes is large. However, sometimes a large fraction of degree-2 variable nodes is used to facilitate a fast encoding structure, as seen in the IEEE 802.11 standard and the DVB-S2 standard. In contrast to MIM-QBP, the proposed RCQ decoder may be applied to any off-the-shelf LDPC code, including those with a large fraction of degree-2 variable nodes. Simulations show that a 4-bit Min-Sum RCQ decoder delivers frame error rate (FER) performance within 0.1 dB of floating point belief propagation (BP) for the IEEE 802.11 standard LDPC code in the low SNR region. The RCQ decoder actually outperforms floating point BP and Min-Sum in the high SNR region were FER less than 10 −5 . This paper also introduces Hierarchical Dynamic Quantization (HDQ) to design the time-varying non-uniform quantizers required by RCQ decoders. HDQ is a low-complexity design technique that is slightly sub-optimal. Simulation results comparing HDQ and optimal quantization on the symmetric binary-input memoryless additive white Gaussian noise channel show a mutual information loss of less than 10 −6 bits, which is negligible in practice.more » « less
-
Quantum low-density parity-check codes are a promising approach to fault-tolerant quantum computation, offering potential advantages in rate and decoding efficiency. Quantum Margulis codes are a new class of QLDPC codes derived from Margulis’ classical LDPC construction via the two-block group algebra framework. We show that quantum Margulis codes, unlike bivariate bicycle codes, which require ordered statistics decoding for effective error correction, can be efficiently decoded using a standard min-sum decoder with linear complexity, when decoded under depolarizing noise. This is attributed to their Tanner graph structure, which does not exhibit group symmetry, thereby mitigating the well-known problem of error degeneracy in QLDPC decoding. To further enhance performance, we propose an algorithm for constructing 2BGA codes with controlled girth, ensuring a minimum girth of 6 or 8, and use it to generate several quantum Margulis codes of length 240 and 642. We validate our approach through numerical simulations, demonstrating that quantum Margulis codes behave significantly better than BB codes in the error floor region, under min-sum decoding.more » « less
An official website of the United States government

