Platoon formation with connected and automated vehicles (CAVs) in a mixed traffic environment poses significant challenges due to the presence of human-driven vehicles (HDVs) with unknown dynamics and control actions. In this paper, we develop a safety-prioritized receding horizon control framework for creating platoons of HDVs preceded by a CAV Our framework ensures indirect control of the following HDVs by directly controlling the leading CAV given the safety constraints. The framework utilizes a data-driven prediction model that is based on the recursive least squares algorithm and the constant time headway relative velocity car-following model to predict future trajectories of human-driven vehicles. To demonstrate the efficacy of the proposed framework, we conduct numerical simulations and provide the associated scalability, robustness, and performance analyses.
more »
« less
Recursively Feasible Shrinking-Horizon MPC in Dynamic Environments with Conformal Prediction Guarantees
n this paper, we focus on the problem of shrinking-horizon Model Predictive Control (MPC) in uncertain dynamic environments. We consider controlling a deterministic autonomous system that interacts with uncontrollable stochastic agents during its mission. Employing tools from conformal prediction, existing works derive high-confidence prediction regions for the unknown agent trajectories, and integrate these regions in the design of suitable safety constraints for MPC. Despite guaranteeing probabilistic safety of the closed-loop trajectories, these constraints do not ensure feasibility of the respective MPC schemes for the entire duration of the mission. We propose a shrinking-horizon MPC that guarantees recursive feasibility via a gradual relaxation of the safety constraints as new prediction regions become available online. This relaxation enforces the safety constraints to hold over the least restrictive prediction region from the set of all available prediction regions. In a comparative case study with the state of the art, we empirically show that our approach results in tighter prediction regions and verify recursive feasibility of our MPC scheme.
more »
« less
- Award ID(s):
- 2331880
- PAR ID:
- 10545310
- Publisher / Repository:
- L4DC - PMLR
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper introduces an approach for reducing the computational cost of implementing Linear Quadratic Model Predictive Control (MPC) for set-point tracking subject to pointwise-in-time state and control constraints. The approach consists of three key components: First, a log-domain interior-point method used to solve the receding horizon optimal control problems; second, a method of warm-starting this optimizer by using the MPC solution from the previous timestep; and third, a computational governor that maintains feasibility and bounds the suboptimality of the warm-start by altering the reference command provided to the MPC problem. Theoretical guarantees regarding the recursive feasibility of the MPC problem, asymptotic stability of the target equilibrium, and finite-time convergence of the reference signal are provided for the resulting closed-loop system. In a numerical experiment on a lateral vehicle dynamics model, the worst-case execution time of a standard MPC implementation is reduced by over a factor of 10 when the computational governor is added to the closed-loop system.more » « less
-
null (Ed.)This paper presents a Model Predictive Controller (MPC) that uses navigation integrity risk as a constraint. Navigation integrity risk accounts for the presence of faults in localization sensors and algorithms, an increasingly important consideration as the number of robots operating in life and mission-critical situations is expected to increase dramatically in near future (e.g. a potential influx of self-driving cars). Specifically, the work uses a local nearest neighbor integrity risk evaluation methodology that accounts for data association faults as a constraint in order to guarantee localization safety over a receding horizon. Moreover, state and control-input constraints have also been enforced in this work. The proposed MPC design is tested using real-world mapped environments, showing that a robot is capable of maintaining a predefined minimum level of localization safety while operating in an urban environment.more » « less
-
Intelligent mobile sensors, such as uninhabited aerial or underwater vehicles, are becoming prevalent in environmental sensing and monitoring applications. These active sensing platforms operate in unsteady fluid flows, including windy urban environments, hurricanes and ocean currents. Often constrained in their actuation capabilities, the dynamics of these mobile sensors depend strongly on the background flow, making their deployment and control particularly challenging. Therefore, efficient trajectory planning with partial knowledge about the background flow is essential for teams of mobile sensors to adaptively sense and monitor their environments. In this work, we investigate the use of finite-horizon model predictive control (MPC) for the energy-efficient trajectory planning of an active mobile sensor in an unsteady fluid flow field. We uncover connections between trajectories optimized over a finite-time horizon and finite-time Lyapunov exponents of the background flow, confirming that energy-efficient trajectories exploit invariant coherent structures in the flow. We demonstrate our findings on the unsteady double gyre vector field, which is a canonical model for chaotic mixing in the ocean. We present an exhaustive search through critical MPC parameters including the prediction horizon, maximum sensor actuation, and relative penalty on the accumulated state error and actuation effort. We find that even relatively short prediction horizons can often yield energy-efficient trajectories. We also explore these connections on a three-dimensional flow and ocean flow data from the Gulf of Mexico. These results are promising for the adaptive planning of energy-efficient trajectories for swarms of mobile sensors in distributed sensing and monitoring.more » « less
-
We propose a hierarchical learning architecture for predictive control in unknown environments. We consider a constrained nonlinear dynamical system and assume the availability of state-input trajectories solving control tasks in different environments. A parameterized environment model generates state constraints specific to each task, which are satisfied by the stored trajectories. Our goal is to find a feasible trajectory for a new task in an unknown environment. From stored data, we learn strategies in the form of target sets in a reduced-order state space. These strategies are applied to the new task in real-time using a local forecast of the new environment, and the resulting output is used as a terminal region by a low-level receding horizon controller. We show how to i) design the target sets from past data and then ii) incorporate them into a model predictive control scheme with shifting horizon that ensures safety of the closed-loop system when performing the new task. We prove the feasibility of the resulting control policy, and verify the proposed method in a robotic path planning application.more » « less
An official website of the United States government

