skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Receptor-like cytoplasmic kinases: orchestrating plant cellular communication
The receptor-like kinase (RLK) family of receptors and the associated receptor-like cytoplasmic kinases (RLCKs) have expanded in plants because of selective pressure from environmental stress and evolving pathogens. RLCKs link pathogen perception to activation of coping mechanisms. RLK–RLCK modules regulate hormone synthesis and responses, reactive oxygen species (ROS) production, Ca2+ signaling, activation of mitogen-activated protein kinase (MAPK), and immune gene expression, all of which contribute to immunity. Some RLCKs integrate responses from multiple receptors recognizing distinct ligands. RLKs/RLCKs and nucleotide-binding domain, leucine-rich repeats (NLRs) were found to synergize, demonstrating the intertwined genetic network in plant immunity. Studies in arabidopsis (Arabidopsis thaliana) have provided paradigms about RLCK functions, but a lack of understanding of crop RLCKs undermines their application. In this review, we summarize current understanding of the diverse functions of RLCKs, based on model systems and observations in crop species, and the emerging role of RLCKs in pathogen and abiotic stress response signaling.  more » « less
Award ID(s):
1916893
PAR ID:
10545386
Author(s) / Creator(s):
; ;
Publisher / Repository:
Trends in plant science
Date Published:
Journal Name:
Trends in Plant Science
ISSN:
1360-1385
Subject(s) / Keyword(s):
Plant receptor like kinases in plant microbe interaction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. TIR domains are NAD-degrading enzymes that function during immune signaling in prokaryotes, plants, and animals. In plants, most TIR domains are incorporated into intracellular immune receptors termed TNLs. In Arabidopsis, TIR-derived small molecules bind and activate EDS1 heterodimers, which in turn activate RNLs, a class of cation channel–forming immune receptors. RNL activation drives cytoplasmic Ca 2+ influx, transcriptional reprogramming, pathogen resistance, and host cell death. We screened for mutants that suppress an RNL activation mimic allele and identified a TNL, SADR1. Despite being required for the function of an autoactivated RNL, SADR1 is not required for defense signaling triggered by other tested TNLs. SADR1 is required for defense signaling initiated by some transmembrane pattern recognition receptors and contributes to the unbridled spread of cell death in lesion simulating disease 1 . Together with RNLs, SADR1 regulates defense gene expression at infection site borders, likely in a non-cell autonomous manner. RNL mutants that cannot sustain this pattern of gene expression are unable to prevent disease spread beyond localized infection sites, suggesting that this pattern corresponds to a pathogen containment mechanism. SADR1 potentiates RNL-driven immune signaling not only through the activation of EDS1 but also partially independently of EDS1. We studied EDS1-independent TIR function using nicotinamide, an NADase inhibitor. Nicotinamide decreased defense induction from transmembrane pattern recognition receptors and decreased calcium influx, pathogen growth restriction, and host cell death following intracellular immune receptor activation. We demonstrate that TIR domains can potentiate calcium influx and defense and are thus broadly required for Arabidopsis immunity. 
    more » « less
  2. null (Ed.)
    Sucrose-non-fermenting-1-related protein kinase-2s (SnRK2s) are critical for plant abiotic stress responses, including abscisic acid (ABA) signaling. Here, we develop a genetically encoded reporter for SnRK2 kinase activity. This sensor, named SNACS, shows an increase in the ratio of yellow to cyan fluorescence emission by OST1/SnRK2.6-mediated phosphorylation of a defined serine residue in SNACS. ABA rapidly increases FRET efficiency in N. benthamiana leaf cells and Arabidopsis guard cells. Interestingly, protein kinase inhibition decreases FRET efficiency in guard cells, providing direct experimental evidence that basal SnRK2 activity prevails in guard cells. Moreover, in contrast to ABA, the stomatal closing stimuli, elevated CO2 and MeJA, did not increase SNACS FRET ratios. These findings and gas exchange analyses of quintuple/sextuple ABA receptor mutants show that stomatal CO2 signaling requires basal ABA and SnRK2 signaling, but not SnRK2 activation. A recent model that CO2 signaling is mediated by PYL4/PYL5 ABA-receptors could not be supported here in two independent labs. We report a potent approach for real-time live-cell investigations of stress signaling. 
    more » « less
  3. null (Ed.)
    The ERECTA (ER) family of genes, encoding leucine-rich repeat receptor-like kinase (RLK), influences complex morphological and physiological aspects of plants. Modulation of ER signaling leads to abiotic stress tolerance in diverse plant species. However, whether the gain in stress tolerance is accompanied with desirable agronomic performance is not clearly known. In this study, soybean plants potentially suppressed in ER signaling were evaluated for the phenotypic performance and drought response in the greenhouse. These plants expressed a dominant-negative Arabidopsis thaliana ER ( AtER ) called Δ Kinase to suppress ER signaling, which has previously been linked with the tolerance to water deficit, a major limiting factor for plant growth and development, directly compromising agricultural production. With the aim to select agronomically superior plants as stress-tolerant lines, transgenic soybean plants were subjected to phenotypic selection and subsequently to water stress analysis. This study found a strong inverse correlation of Δ Kinase expression with the agronomic performance of soybean plants, indicating detrimental effects of expressing Δ Kinase that presumably led to the suppression of ER signaling. Two lines were identified that showed favorable agronomic traits and expression of Δ Kinase gene, although at lower levels compared with the rest of the transgenic lines. The drought stress analysis on the progenies of these lines, however, showed that these plants were more susceptible to water-deficit stress as compared with the non-transgenic controls. The selected transgenic plants showed greater stomata density and conductance, which potentially led to higher biomass, and consequently more water demand and greater susceptibility to the periods of water withholding. 
    more » « less
  4. Abstract RAF-like kinases, members of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, are central integrators of external and internal signals in plant stress responses and growth regulation. These kinases mediate signaling through multiple hormone pathways, including abscisic acid-dependent and -independent pathways, ethylene signaling, and rapid auxin responses. Unlike typical MAPKKKs that function through kinase cascades, RAF-like kinases primarily employ direct phosphorylation of downstream targets and dynamic subcellular localization to mediate specific physiological responses. Here, we review the emerging roles of RAF-like kinases in Arabidopsis thaliana, highlighting their integrative functions in hormone signaling, stress responses, and growth control. The complex interplay between different RAF-like kinase subgroups and their diverse cellular targets underscores the intricate regulatory mechanisms plants have evolved to coordinate environmental responses with development. 
    more » « less
  5. In plants, coordination of cell division and differentiation is critical for tissue patterning and organ development. Directional cell signaling and cell polarity have been proposed to participate in coordination of these developmental processes. For instance, a leucine-rich repeat receptor-like kinase (LRR-RLK) named INFLORESCENCE AND ROOT APICES KINASE (IRK) functions to restrict stele area and inhibit longitudinal anticlinal divisions (LADs) in the endodermis where it is polarly localized. The LRR-RLK most closely related to IRK is PXY/TDR CORRELATED 2 (PXC2) and we find that PXC2 shows similar polarized accumulation as IRK in root cell types. To further understand how these proteins operate in directional cell-cell signaling and root development we explored PXC2 function. pxc2 roots have an increase in stele area, indicating that PXC2 also functions to restrict stele size. Additionally, compared to either single mutant, irk pxc2 roots have an enhanced phenotype with further increases in endodermal LADs and stele area indicating redundant activities of these receptors. The double mutant also exhibits abnormal root growth, suggesting broader functions of PXC2 and IRK in the root. However, PXC2 is not functionally equivalent to IRK, as endodermal misexpression of PXC2 did not fully rescue irk. We propose that PXC2 is at least partially redundant to IRK with a more predominant role for IRK in repression of endodermal LADs. Our results are consistent with the hypothesis that repression of specific endodermal cell divisions and stele area through a PXC2/IRK-mediated directional signaling pathway is required for coordinated root growth and development. 
    more » « less