This lessons learned paper delves into the realm of effective student-centered teaching practices within middle and upper-level engineering classes, with the primary goal of enhancing students' acquisition of disciplinary knowledge. The research is anchored by a central inquiry: what student-centered teaching approaches do exemplary engineering faculty employ to promote knowledge-building in their courses, and how do these approaches align with their beliefs about teaching? To address the research question, the study employed the participatory action research (PAR) methodology, which prioritizes the invaluable input and expertise of participants. A diverse group of participants renowned for their teaching excellence was selected from five departments. A total of ten participants were chosen, and data was collected using a variety of methods, including classroom observations, analysis of course materials, surveys, and focus group discussions. Our observations across various courses have revealed common practices employed by instructors to foster effective learning environments. These practices encompass dynamic and diverse class introductions that utilize strategies like revisiting prior content, storytelling, and addressing student well-being to establish a strong foundation for the session. Throughout the class, instructors consistently maintained student engagement through techniques such as group activities, structured interactions, active problem-solving, and thought-provoking question-and-answer sessions. Visual aids and technology were integral in enhancing content delivery. Instructors also ensured the content was relatable by linking lessons to research findings, relatable examples, and familiar landmarks, grounding theoretical concepts in real-life relevance. Personalized support was a priority, with instructors offering targeted feedback to smaller groups and individual students, including one-on-one sessions for additional assistance. Some instructors introduced unique practices such as debate activities, involving students in decision-making processes, cross-course connections, and specialized problem-solving techniques. These diverse approaches collectively underscore the multifaceted strategies instructors employ to create engaging and effective learning experiences. Another significant initiative undertaken in our study involved organizing a summer workshop that provided a platform for instructors to convene and engage in collaborative discussions regarding their teaching practices and their top five teaching priorities. During this workshop, we also deliberated on the preliminary findings from our data collection. The instructors collectively emphasized the importance of getting students engaged in the learning process. We identified several overarching categories of priorities that held relevance for all instructors, including the establishment of personal relationships with students, the effective organization of course content and class activities, strategies for motivating students, and the integration of course content with real-world applications. During the lightning talk, we will share a comprehensive overview of the study's research findings as well as the importance of student-centered teaching practices in engineering education.
more »
« less
This content will become publicly available on June 23, 2025
A Case Study on How Instructors’ Pedagogical Knowledge Influences Their Classroom Practices for First-Year Engineering Courses
This complete research paper details an investigation into the influence of instructors' pedagogical knowledge on their classroom practices in the context of teaching first-year engineering courses.
Background and Motivation: First-year engineering courses serve as the foundational setting in which students are introduced to the field of engineering as well as the pedagogies specific to engineering teaching and learning. These courses are pivotal in equipping students with essential knowledge and skills, setting the stage for their success in more advanced engineering topics. Understanding how instructors' pedagogical knowledge affects their teaching practices is crucial. Pedagogical knowledge encompasses a wide range of techniques to effectively manage a classroom and engage students. This includes the use of instructional strategies that cater to diverse student needs, the design of impactful and engaging lesson plans, etc. There is, however, limited research on how instructors’ pedagogical knowledge influences their classroom practices in first-year engineering courses. Hence, it seems opportune and essential to conduct additional research on engineering instructors' classroom practices.
Research Question: The central question driving this research is: How does instructors' pedagogical knowledge influence their pedagogical practices for first-year engineering courses?
Method: For this study, we chose the model of teacher professional knowledge and skill (TPK&S) that includes pedagogical content knowledge (PCK). The model recognizes the fundamental importance of pedagogical knowledge and contextualizes PCK within that framework, encompassing the intricate nature of teaching and learning. A descriptive case study was utilized as a methodology for this work to delve into the phenomenon. The context of the study was a first-year introductory engineering course offered at a large public research institution. This is a pilot study for an NSF-funded project (blinded for review), the study involved two instructors, Chandler and Joey (pseudonyms), chosen through purposive sampling, with varying levels of teaching experience. Data collection involved direct classroom observation using the Teaching Dimensions Observation Protocol (TDOP) and semi-structured interviews conducted after the observations. The interviews were conducted after classroom observations, allowing the researcher to explore specific findings from the observations.
Results: Thematic analysis was used to categorize the data based on the constructs of the theoretical framework. The analysis revealed three major themes: (a) Instructors' topic-specific professional knowledge significantly influences their pedagogical practices. Both instructors adapt their teaching methods based on their understanding of course material and students' difficulties. (b) The interaction between instructors' personal pedagogical content knowledge (PCK) and the classroom context shapes their classroom practices. (c) Instructors' beliefs and prior knowledge act as amplifiers or filters based on the situation. They filter out their teaching practices that do not align with their beliefs and prior knowledge.
Conclusion: The findings presented in this paper provide valuable insights into the complex interplay between instructors' pedagogical knowledge and their classroom practices. This work holds significant implications for current and future first-year instructors in that this paper will showcase how instructors use their understanding of the content and their students to teach, which is a critical aspect of helping students successfully integrate into engineering.
more »
« less
- Award ID(s):
- 2215989
- PAR ID:
- 10545467
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Format(s):
- Medium: X
- Location:
- Portland, Oregon
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background The growing understanding of the oppressive inequities that exist in postsecondary education has led to an increasing need for culturally relevant pedagogy. Researchers have found evidence that beliefs about the nature of knowledge predict pedagogical practices. Culturally relevant pedagogy supports students in ways that leverage students’ own cultures through three tenets: academic success, cultural competence, and sociopolitical consciousness. If STEM practitioners believe that their disciplines are culture-free, they may not enact culturally relevant pedagogy in their courses. We investigated how and in what forms 40 faculty from mathematics, physics, chemistry, and biology departments at Hispanic-Serving Institutions enacted culturally relevant pedagogy. We used the framework of practical rationality to understand how epistemological beliefs about the nature of their discipline combined with their institutional context impacted instructors’ decision to enact practices aligning with the three tenets of culturally relevant pedagogy. Results In total, 35 instructors reported using practices that aligned with the academic success tenet, nine instructors with the cultural competence tenet, and one instructor with the sociopolitical consciousness tenet. Instructors expressed and even lauded their disciplines’ separation from culture while simultaneously expressing instructional decisions that aligned with culturally relevant pedagogy. Though never asked directly, six instructors made statements reflecting a “culture-free” belief about knowledge in their discipline such as “To me, mathematics has no color.” Five of those instructors also described altering their teaching in ways that aligned with the academic success tenet. The framework of practical rationality helped explain how the instructors’ individual obligation (to the needs of individual students) and interpersonal obligation (to the social environment of the classroom) played a role in those decisions. Conclusions Instructors’ ability to express two contradictory views may indicate that professional development does not have to change an instructor’s epistemological beliefs about their discipline to convince them of the value of enacting culturally relevant pedagogy. We propose departmental changes that could enable instructors to decide to cultivate students’ cultural competence and sociopolitical consciousness. Our findings highlight the need for future research investigating the impacts of culturally relevant pedagogical content knowledge on students’ experiences.more » « less
-
The recent groundswell of interest in computer science education across many countries has created a pressing need for computing teachers at the secondary level. To satisfy this demand, some educational systems are drawing from their pool of in-service teachers trained in other disciplines. While these transitioning teachers can learn about computing pedagogy and subject matter at professional learning workshops, daily teaching experiences will also be a source of their learning. We studied a co-teaching program where instructional responsibilities were distributed between teachers and volunteers from the tech industry to explore how specific teaching practices supported teacher learning, with a focus on pedagogical content knowledge (PCK). Through qualitative analysis of questionnaire and interview data gathered from three teachers during one school year, we identified the practices they engaged in and how their learning related to the enactment of those practices. Our results highlight several factors that influenced the ways in which teaching practices provided participants with opportunities to learn PCK: (a) active participation of students and volunteers; (b) teacher’s level of content knowledge; (c) interdependent practices; and (d) immediacy of the classroom environment.more » « less
-
One of the critical barriers to increasing pre-collegiate computer science course offerings in the U.S. is a lack of qualified computer science teachers. Programs such as TEALS, a teacher preparation program pairing high school teachers with computing professionals to offer CS courses, provide opportunities for in-service teachers to gain experience teaching computer science. However, it is not clear whether the high school teachers develop sufficient pedagogical expertise to sustain high-quality computer science course offerings at their schools. Furthermore, the field of computer science education lacks valid and reliable ways of measuring pedagogical content knowledge (PCK), a construct that describes the knowledge teachers need for effective instruction. In this poster, the authors present these results from the first year of a three-year NSF grant to study how TEALS participation influences novice computer science teachers' PCK: 1) a theoretical framework describing the critical components of CS PCK, 2) the results of the first field test of a CS PCK assessment, including the psychometric properties of the assessment, and 3) a comparison of how teachers performed on the assessment at the beginning and end of their first year of computer science teaching and how they performed relative to their computing professional mentors.more » « less
-
Pedagogical content knowledge (PCK) is specialized knowledge necessary to teach a subject. PCK integrates subject-matter content knowledge with knowledge of students and of teaching strategies so that teachers can perform the daily tasks of teaching. Studies in mathematics education have found correlations between measures of PCK and student learning. Finding robust, scalable ways for developing and measuring computer science (CS) teachers’ PCK is particularly important in CS education in the United States, given the lack of formal CS teacher preparation programs and certifications. However, measuring pedagogical content knowledge is a challenge for all subject areas. It can be difficult to write assessment items that elicit the different aspects of PCK and there are often multiple appropriate pedagogical choices in any given teaching scenario. In this paper, we describe a framework and pilot data from a questionnaire intended to elicit PCK from teachers of high school introductory CS courses and we propose future directions for this work.more » « less