skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Highly Selective O -Phenylene Bisurea Catalysts for ROP: Stabilization of Oxyanion Transition State by a Semiflexible Hydrogen Bond Pocket
Organocatalyzed ring-opening polymerization (ROP) is a versatile technique for synthesizing biodegradable polymers, including polyesters and polycarbonates. We introduce o-phenylene bisurea (OPBU) (di)anions as a novel class of organocatalysts that are fast, easily tunable, mildly basic, and exceptionally selective. These catalysts surpass previous generations, such as thiourea, urea, and TBD, in selectivity (kp/ktr) by 8 to 120 times. OPBU catalysts facilitate the ROP of various monomers, achieving high conversions (>95%) in seconds to minutes, producing polymers with precise molecular weights and very low dispersities (Đ ≈ 1.01). This performance nearly matches the ideal distribution expected from living polymerization (Poisson distribution). Density functional theory (DFT) calculations reveal that the catalysts stabilize the oxyanion transition state via a hydrogen bond pocket similar to the "oxyanion hole" in enzymatic catalysis. Both experimental and theoretical analyses highlight the critical role of the semi-rigid o-phenylene linker in creating a hydrogen bond pocket that is tight yet flexible enough to accommodate the oxyanion transition state effectively. These new insights have provided a new class of organic catalysts whose accessibility, moderate basicity, excellent solubility, and unparalleled selectivity and tunability open up new opportunities for controlled polymer synthesis.  more » « less
Award ID(s):
2002933 2403822
PAR ID:
10545584
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
146
Issue:
32
ISSN:
0002-7863
Page Range / eLocation ID:
22295 to 22305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fe3+-cross-linked chitosan exhibits the potential for selectively adsorbing arsenic (As) over competing species, such as phosphate, for water remediation. However, the effective binding mechanisms, bond nature, and controlling factor(s) of the selectivity are poorly understood. This study employs ab initio calculations to examine the competitive binding of As(V), P(V), and As(III) to neat chitosan and Fe3+-chitosan. Neat chitosan fails to selectively bind As oxyanions, as all three oxyanions bind similarly via weak hydrogen bonds with preferences of P(V) = As(V) > As(III). Conversely, Fe3+-chitosan selectively binds As(V) over As(III) and P(V) with binding energies of −1.9, −1, and −1.8 eV for As(V), As(III), and P(V), respectively. The preferences are due to varying Fe3+–oxyanion donor–acceptor characteristics, forming covalent bonds with distinct strengths (Fe–O bond ICOHP values: – 4.9 eV/bond for As(V), – 4.7 eV/bond for P(V), and −3.5 eV/bond for As(III)). Differences in pKa between As(V)/P(V) and As(III) preclude any preference for As(III) under typical environmental pH conditions. Furthermore, our calculations suggest that the binding selectivity of Fe3+-chitosan exhibits a pH dependence. These findings enhance our understanding of the Fe3+–oxyanion interaction crucial for preferential oxyanion binding using Fe3+-chitosan and provide a lens for further exploration into alternative transition-metal–chitosan combinations and coordination chemistries for applications in selective separations. 
    more » « less
  2. A library of structurally related heterocycles containing N-H motifs are explored as ring-opening polymerization (ROP) pre-catalysts. Upon deprotonation of these heterocycles with appropriate bases, corresponding salts are formed, which catalyze the ROP of various lactones and cyclic carbonates, affording polymers with dispersity values ranging from 1.01 to 1.12. These catalysts exhibit a wide range of catalytic activities, spanning over seven orders of magnitude (>107), with their relative rates generally correlating to the pKa of the N-H group in the neutral heterocycle. Despite apparent structural and electronic similarities, these heterocycle catalysts display markedly different kinetic behaviors regarding the identity of different cations. Kinetic and NMR studies have revealed two distinct sets of mechanisms: small alkali metal cations such as Li+ and Na+ reduce the activity of imidazol(in)e derived catalysts due to their tendency to associate with the alkoxide chain-end, thus inhibiting its propagation; conversely, these cations form robust cation-π assemblies with indolocarbazole anions, simultaneously binding and activating monomer carbonyls towards the nucleophilic attack, resulting in a significant rate enhancement. This distinctive activation motif of the indolocarbazole sets it apart from other catalysts by utilizing cations as a potent handle for modulating polymerization reactivity. Coupled with its high availability, good solubility, high activity, moderate basicity, and high selectivity, the indolocarbazole heterocycle emerges as one of the most versatile organocatalysts for ring-opening polymerization. 
    more » « less
  3. null (Ed.)
    Advancements in externally controlled polymerization methodologies have enabled the synthesis of novel polymeric structures and architectures, and they have been pivotal to the development of new photocontrolled lithographic and 3D printing technologies. In particular, the development of externally controlled ring-opening polymerization (ROP) methodologies is of great interest, as these methods provide access to novel biocompatible and biodegradable block polymer structures. Although ROPs mediated by photoacid generators have made significant contributions to the fields of lithography and microelectronics development, these methodologies rely upon catalysts with poor stability and thus poor temporal control. Herein, we report a class of ferrocene-derived acid catalysts whose acidity can be altered through reversible oxidation and reduction of the ferrocenyl moiety to chemically and electrochemically control the ROP of cyclic esters. 
    more » « less
  4. Organocatalyzed ring-opening polymerization (O-ROP) of a six-five bicyclic lactone, 4,5- trans -cyclohexyl-fused γ-butyrolactone (4,5-T6GBL), can be topologically selective or living at room temperature, depending on catalyst structure. A screening of (thio)urea [(T)U] and organic base pairs revealed unique trends in reactivity for this monomer as well as the most active catalyst pairs, which were employed as received commercially to produce relatively high molecular weight ( M n up to 106 kDa), low dispersity ( Đ = 1.04) linear poly(4,5-T6GBL) in a living fashion. The ROP using a hybrid organic/inorganic pair of TU/KOMe in neat conditions led to poly(4,5-T6GBL) with even higher molecular weight ( M n = 215 kDa, Đ = 1.04). In comparison to the metal-catalyzed system, (T)U-base pairs exhibited competitive kinetics and reached higher monomer conversions, and their reactions can be performed in air. In addition, the resulting polymers required less purification to produce materials with higher onset decomposition temperature. (T)U-base pairs were selective towards linear polymerization only, whereas triazabicyclodecene can catalyze both polymerization and (quantitative) depolymerization processes, depending on reaction conditions. Cyclic polymers with M n = 41–72 kDa were selectively formed via N-heterocyclic carbene-mediated zwitterionic O-ROP. 
    more » « less
  5. Ferrocene (Fc)/ferrocenium (Fc+)-decorated carbon nanotube electrode materials have shown promise for selectively adsorbing arsenic (As) over dissimilar anions like Cl– and ClO4–, and isostructural transition-metal oxyanions for water remediation; however, the competition between same-group oxyanions (such as arsenate vs phosphate) is underexplored and poorly understood. We use ab initio calculations to examine the competitive binding of As(V), P(V), and As(III) to Fc/Fc+ with and without functional substitutions (OH, SH, NH2, COOH, CH3, C2H5, NO2, and Cl). This work aims to understand factors that induce the selective binding of toxic arsenic over phosphate. We find that neat Fc cannot distinguish the three oxyanions because physical forces (electrostatics and dispersion) dominate the Fc-oxyanion interactions. However, combined oxidation and substitution effects enable selectivity for As(V) over P(V). Oxidation of Fc to Fc+ allows the formation of Fc+-oxyanion covalent bonds with varying donor–acceptor character depending on the oxyanion. Additionally, NH2 and SH groups that donate charge to the base Fc+ molecule and H-bond to oxyanion induce an energetic preference for As(V) over P(V) by −0.23 and −0.13 eV, respectively. Differences in pKa between As(V)/P(V) and As(III) preclude any preference for As(III) over the other anions. Using the calculated energetics, we predict the pH-dependent binding selectivity of functionalized ferrocenium. These findings demonstrate the challenges of Fc/Fc+-oxyanion interaction for selective binding and provide a path for identifying other molecules and substituents for efficient metallocene adsorbent design. 
    more » « less