skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-speed in-line optical angular scatterometer for high-throughput roll-to-roll nanofabrication
Roll-to-roll and other high-speed printing manufacturing processes are increasingly being extended to micro- and nanoelectronics and photonics due to cost and throughput advantages as compared with traditional wafer-scale manufacturing. The extra degrees of freedom associated with a moving web require high speed, in-line metrology to control the manufacturing process. Many state-of-the-art metrology approaches have sub-10 nm resolution but cannot be implemented during real-time fabrication processes because of environmental constraints or contact/cross sectional requirements. Optical angular scatterometry is a non-contact metrology approach that can be implemented at high speed. We demonstrate a system that uses 45° off-axis parabolic mirrors and an 8kHz resonant scanner to vary the incident/reflected angle from ~17° to ~67°, suitable for nanoscale metrology at web speeds of up to 350 cm/s, well-beyond the speed of current manufacturing tools. Scatterometry is sensitive not only to gross defects (missing pattern sections) but also to variations in nanoscale pattern details, offering a pathway to feedback control of the manufacturing process.  more » « less
Award ID(s):
2041676
PAR ID:
10545608
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Panning, Eric M; Liddle, J Alexander
Publisher / Repository:
SPIE
Date Published:
Journal Name:
Proceedings of SPIE the International Society for Optical Engineering
ISSN:
0277-786X
ISBN:
9781510640535
Page Range / eLocation ID:
44
Subject(s) / Keyword(s):
Roll-to-roll Metrology Optical Scatterometry
Format(s):
Medium: X
Location:
Online Only, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High-throughput and cost-efficient fabrication of intricate nanopatterns using top-down approaches remains a significant challenge. To overcome this limitation, advancements are required across various domains: patterning techniques, real-time and post-process metrology, data analysis, and, crucially, process control. We review recent progress in continuous, top-down nanomanufacturing, with a particular focus on data-driven process control strategies. We explore existing Machine Learning (ML)-based approaches for implementing key aspects of continuous process control, encompassing high-speed metrology balancing speed and resolution, modeling relationships between process parameters and yield, multimodal data fusion for comprehensive process monitoring, and control law development for real-time process adjustments. To assess the applicability of established control strategies in continuous settings, we compare roll-to-roll (R2R) manufacturing, a paradigmatic continuous multistage process, with the well-established batch-based semiconductor manufacturing. Finally, we outline promising future research directions for achieving high-quality, cost-effective, top-down nanomanufacturing and particularly R2R nanomanufacturing at scale. 
    more » « less
  2. Abstract Roll-to-roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based electronic products, as opposed to the sheet-to-sheet approach suited for low-volume work. However, one of the major challenges in R2R flexible electronics printing is achieving tight alignment tolerances, as specified by the device resolution (usually at micrometer level), for multi-layer printed electronics. The alignment of the printed patterns in different layers, known as registration, is critical to product quality. Registration errors are essentially accumulated positional or dimensional deviations caused by un-desired variations in web tensions and web speeds. Conventional registration control methods rely on model-based feedback controllers, such as PID control, to regulate the web tension and the web speed. However, those methods can not guarantee that the registration error always converges to zero due to lagging problems. In this paper, we propose a Spatial-Terminal Iterative Learning Control (STILC) method combined with PID control to enable the registration error to converge to zero iteratively, which achieves unprecedented control in the creation, integration and manipulation of multi-layer microstructures in R2R processes. We simulate the registration error generation and accumulation caused by axis mismatch between roller and motor that commonly exists in R2R systems. We show that the STILC-PID hybrid control method can eliminate the registration error completely after a reasonable number of iterations. We also compare the performances of STILC with a constant-value basis and a cosine-form basis. The results show that the control model with a cosine-form basis provides a faster convergence speed for R2R registration error elimination. 
    more » « less
  3. Roll-to-roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based electronic products, as opposed to the sheet-to-sheet approach suited for low-volume work. However, one of the major challenges in R2R flexible electronics printing is achieving tight alignment tolerances, as specified by the device resolution (usually at micrometer level), for multi-layer printed electronics. The alignment of the printed patterns in different layers, known as registration, is critical to product quality. Registration errors are essentially accumulated positional or dimensional deviations caused by un-desired variations in web tensions and web speeds. Conventional registration control methods rely on model-based feedback controllers, such as PID control, to regulate the web tension and the web speed. However, those methods can not guarantee that the registration error always converges to zero due to lagging problems. In this paper, we propose a Spatial-Terminal Iterative Learning Control (STILC) method combined with PID control to enable the registration error to converge to zero iteratively, which achieves unprecedented control in the creation, integration and manipulation of multi-layer microstructures in R2R processes. We simulate the registration error generation and accumulation caused by axis mismatch between roller and motor that commonly exists in R2R systems. We show that the STILC-PID hybrid control method can eliminate the registration error completely after a reasonable number of iterations. We also compare the performances of STILC with a constant-value basis and a cosine-form basis. The results show that the control model with a cosine-form basis provides a faster convergence speed for R2R registration error elimination. 
    more » « less
  4. Based on a model developed for the roll-to-roll imprinting process, this paper describes the relative importance of the processing, material properties, and transport parameters in Roll-to-Roll Nanoimprint Lithography (R2RNIL). In particular, the model is utilized to investigate the effect of web speed, fluid film thickness, viscosity, stress relaxation time, mold pattern geometry and size on mold filling. Based on a typical imprint roller configuration, kinematic analysis, and the conservation laws from classical mechanics, the behavior of the squeezing of a viscoelastic fluid film into a rigid mold cavity is described. Further, the effect of web speed, fluid film thickness and key rheological parameters, namely the Weissenberg and Deborah numbers, are discussed. These dimensionless numbers are typically employed to quantify viscoelastic effects in fluid flow problems. The effect of other scale-sensitive and geometric parameters, such as the capillary number and pattern width-to-height ratio, on the imprint process is also discussed. Numerical simulations are provided to corroborate the discussions and to quantify the relative importance of the parameters. 
    more » « less
  5. Abstract Roll-to-roll (R2R) manufacturing is a highly efficient industrial method for continuously processing flexible webs through a series of rollers. With advancements in technology, R2R manufacturing has emerged as one of the most economical production methods for advanced products, such as flexible electronics, renewable energy devices, and 2D materials. However, the development of cost-effective and efficient manufacturing processes for these products presents new challenges, including higher precision requirements, the need for improved in-line quality control, and the integration of material processing dynamics into the traditional web handling system. This paper reviews the state of the art in advanced R2R manufacturing, focusing on modeling and control, and highlights research areas that need further development. 
    more » « less