skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inkjet Printed Potentiometric Sensors for Nitrate Detection Directly in Soil enabled by a Hydrophilic Passivation Layer
Abstract Agricultural intensification has increased the use of chemical fertilizers, promoting plant growth and crop yield. Excessive use of nitrogen fertilizers leads to nutrient loss and low nitrogen use efficiency. Management of nitrogen fertilizer input requires close to real‐time information about the soil nitrate concentration. While there is extensive work developing nitrate ion sensing solutions for liquid media, few allow for in‐soil measurements. This study introduces inkjet‐printed potentiometric sensors, containing 2 electrodes, the reference electrode (RE) and the nitrate‐selective film‐encapsulated working electrode (WE). The interaction between the nitrate‐sensitive membrane and soil nitrate ions causes a change in potential across the RE and WE. Additionally, a hydrophilic Polyvinylidene Fluoride (PVDF) layer ensures the long‐term functionality of the sensor in wet soil environments by protecting it from charged soil particles while simultaneously allowing water to flow from the soil toward the sensor electrodes. The sensors are tested in sand and silt loam soil, demonstrating their versatility across soil types. The potential change can be related to the nitrate concentration in soil, with typical sensitivities of 45–55 mV decade−1. Overall, the use of the PVDF layer allows for direct sensing in moist soil environments, which is critical for developing soil nitrate sensors.  more » « less
Award ID(s):
2226568
PAR ID:
10545619
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials Technologies
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The demand for the capacitive sensor has attracted substantial attention in monitoring pressure due to its distinctive design and passive nature with versatile sensing capability. The effectiveness of the capacitive sensor primarily relies on the variation in thickness of the dielectric layer sandwiched between conductive electrodes. Additive manufacturing (AM), a set of advanced fabrication techniques, enables the production of functional electronic devices in a single-step process. Particularly, the 3D printing approach based on photocuring is a tailorable process in which the resin consists of multiple components that deliver essential mechanical qualities with enhanced sensitivity towards targeted measurements. However, the availability of photocurable resin exhibiting essential flexibility and dielectric properties for the UV-curing production process is limited. The necessity of a highly stable and sensitive capacitive sensor demands a photocurable polymer resin with a higher dielectric constant and conductive electrodes. The primary purpose of this study is to design and fabricate a capacitive device composed of novel photocurable Polyvinylidene fluoride (PVDF) resin utilizing an LCD process exhibiting higher resolution with electrodes embedded inside the substrate. The embedded electrode channels in PVDF substrate are filled with conductive silver paste by an injection process. The additively manufactured sensor provides pressure information by means of a change in capacitance of the dielectric material between the electrodes. X-Ray based micro CT-Scan ex-situ analysis is performed to visualize the capacitance based sensor filled with conductive electrodes. The sensor is tested to measure capacitance response with changes in pressure as a function of time that are utilized for sensitivity analysis. This work represents a significant achievement of AM integration in developing efficient and robust capacitive sensors for pressure monitoring or wearable electronic applications. 
    more » « less
  2. null (Ed.)
    To increase the production of crops, chemical fertilizers are used in crop fields. However, underuse or overuse cannot increase crop yields but even decrease them and cause severe environmental problems. Thus, the detection and monitoring of chemical concentration are increasingly important. To build up and monitor a data-based system for a large area, such a method is costly and time-consuming. In this research, we developed a conductive polymer-based sensor to detect nitrate concentrations in soil water. Conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was used as our sensing material. To increase its conductivity, we used the vacuum phase polymerization method to achieve a high conductive and stable polymer film. The conductivity of the polymer film is 500 S/cm. Our results have demonstrated that the conductive polymer-based sensors have high sensitivity to nitrate solution. The response to 1000 ppm nitrate solution is 47.2% (Response = (Initrate - IDIwate) / IDIwater). The sensors can detect nitrate range from 1ppm to 1000 ppm. The response time is less than 1 minute. This impedance-based sensor will eventually be integrated with the surface acoustic wave sensors, combined with an antenna and a GPR unit for low maintenance, autonomous, and in-situ soil nutrient sensing 
    more » « less
  3. null (Ed.)
    To increase the production of crops, chemical fertilizers are used in crop fields. However, underuse or overuse cannot increase crop yields but even decrease them and cause severe environmental problems. Thus, the detection and monitoring of chemical concentration are increasingly important. To build up and monitor a data-based system for a large area, such a method is costly and time-consuming. In this research, we developed a conductive polymer-based sensor to detect nitrate concentrations in soil water. Conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was used as our sensing material. To increase its conductivity, we used the vacuum phase polymerization method to achieve a high conductive and stable polymer film. The conductivity of the polymer film is 500 S/cm. Our results have demonstrated that the conductive polymer-based sensors have high sensitivity to nitrate solution. The response to 1000 ppm nitrate solution is 47.2% (Response = (Initrate - IDIwate) / IDIwater). The sensors can detect nitrate range from 1ppm to 1000 ppm. The response time is less than 1 minute. This impedance-based sensor will eventually be integrated with the surface acoustic wave sensors, combined with an antenna and a GPR unit for low maintenance, autonomous, and in-situ soil nutrient sensing. 
    more » « less
  4. Abstract Nitrate legacy is affecting groundwater sources across the tropics. This study describes isotopic and ionic spatial trends across a tropical, fractured, volcanic multi‐aquifer system in central Costa Rica in relation to land use change over four decades. Springs and wells (from 800 to 2,400 m asl) were sampled for NO3and Clconcentrations, δ18Owater, δ15NNO3, and δ18ONO3. A Bayesian isotope mixing model was used to estimate potential source contributions to the nitrate legacy in groundwater. Land use change was evaluated using satellite imagery from 1979 to 2019. The lower nitrate concentrations (<1 mg/L NO3N) were reported in headwater springs near protected forested areas, while greater concentrations (up to ∼63 mg/L) were reported in wells (mid‐ and low‐elevation sites in the unconfined unit) and low‐elevation springs. High‐elevation springs were characterized by low Cland moderate NO3/Clratios, indicating the potential influence of soil nitrogen (SN) inputs. Wells and low‐elevation springs exhibited greater NO3/Clratios and Clconcentrations above 100 μmol/L. Bayesian calculations suggest a mixture of sewage (domestic septic tanks), SN (forested recharge areas), and chemical fertilizers (coffee plantations), as a direct result of abrupt land use change in the last 40 years. Our results confirm the incipient trend in increasing groundwater nitrogen and highlight the urgent need for a multi‐municipal plan to transition from domestic septic tanks to regional sewage treatment and sustainable agricultural practices to prevent future groundwater quality degradation effectively. 
    more » « less
  5. null (Ed.)
    Structural health monitoring of fiber reinforced composites is an extensive field of research that aims to reduce maintenance costs through in-situ damage detection. However, the need for externally bonded sensor systems and complicated fabrication processes limit the widespread application of most current structural health monitoring techniques. This work introduces a novel multifunctional fiber reinforced composite that relies on a ferroelectric prepreg fabricated using dehydrofluorinated (DHF) polyvinylidene fluoride (PVDF), which exhibits a thermally stable piezoelectric response. The self-sensing material presented in this work requires minimal external components, as the piezoelectric sensing mechanism is fully contained within the composite. This is accomplished by fabricating a ferroelectric prepreg consisting of DHF PVDF infused woven fiberglass, which is sandwiched between woven carbon fabric layers that act as electrodes, thus forming a piezoelectric sensor fabricated with entirely structural composite materials. Notably, the sensing material is a fully distributed prepreg rather than discretely embedded sensors which enables simplified monitoring of complex structures. As the composite experiences damage under flexural and tensile loading, the internal change in strain results in a charge separation that is detectable as a voltage emission across the sample electrodes. The self-sensing capabilities of this material are explored using traditional mechanical testing techniques, showing comparable performance to common damage detection methods, all while eliminating the need for external bonding of sensors to the structure. 
    more » « less