Abstract Silicon telluride (Si 2 Te 3 ) has emerged as one of the many contenders for 2D materials ideal for the fabrication of atomically thin devices. Despite the progress which has been made in the electric and optical properties of silicon telluride, much work is still needed to better understand this material. We report here on the Raman study of Si 2 Te 3 degradation under both annealing and in situ heating with a laser. Both processes caused pristine Si 2 Te 3 to degrade into tellurium and silicon oxide in air in the absence of a protective coating. A previously unreported Raman peak at ∼140 cm −1 was observed from the degraded samples and is found to be associated with pure tellurium. This peak was previously unresolved with the peak at 144 cm −1 for pristine Si 2 Te 3 in the literature and has been erroneously assigned as a signature Raman peak of pure Si 2 Te 3 , which has caused incorrect interpretations of experimental data. Our study has led to a fundamental understanding of the Raman peaks in Si 2 Te 3 , and helps resolve the inconsistent issues in the literature. This study is not only important for fundamental understanding but also vital for material characterization and applications.
more »
« less
Thermal- and air- stability of the compositional variants of van der Waals Pt-Telluride thin films probed by high resolution photoemission spectroscopy
The Pt-Te compositional phase diagram consists of at least three different compositional line phases (PtTe2, Pt3Te4, and Pt2Te2) that can be described as layered van der Waals materials. This presents challenges in controlling the composition of ultrathin Pt-telluride 2D materials by physical vapor deposition methods. Here we show by temperature programmed synchrotron photoemission spectroscopy that the different phases have varying thermal stability in vacuum. This enables the synthesis of these materials by preparation of PtTe2 films at low growth temperatures and subsequent vacuum annealing to ~ 350 ˚C for Pt3Te4, or ~400 ˚C for Pt2Te2. Such prepared phases are characterized by high resolution core level spectroscopy to provide reference spectra for these materials. Moreover, the chemical stability of these materials was tested by exposure to oxygen and air. Even after prolonged air exposure only the surface Te layer was modified by oxygen chemical bonds that caused a 3-eV shift to higher binding energy of the Te-3d core levels. However, these oxygen species could be desorbed by vacuum annealing at 280 ˚C and pristine Pt-telluride samples can be re-established. This shows the excellent chemical stability of these materials, important for practical applications.
more »
« less
- Award ID(s):
- 2140038
- PAR ID:
- 10545876
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Applied Surface Science
- Volume:
- 644
- Issue:
- C
- ISSN:
- 0169-4332
- Page Range / eLocation ID:
- 158785
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This study demonstrates that a dialkyl ditelluride reagent can produce metastable and difficult-to-achieve metal telluride phases in nanocrystal syntheses. Using didodecyl ditelluride and without the need for phosphine precursors, nanocubes of the pseudo-cubic phase (Cu 1.5 Te) were synthesized at the moderate temperature of 135 °C. At the higher temperature of 155 °C, 2-D nanosheets of vulcanite (CuTe) resulted, a nanomaterial in a phase that has not been previously achieved through thermal decomposition methods. Materials were characterized with TEM, powder XRD and UV-Vis-NIR absorbance spectroscopy.more » « less
-
Abstract Tellurium-rich (Te) adularia-sericite epithermal Au-Ag deposits are an important current and future source of precious and critical metals. However, the source and evolution of ore-forming fluids in these deposits are masked by traditional bulk analysis of quartz oxygen isotope ratios that homogenize fine-scale textures and growth zones. To advance understanding of the source of Te and precious metals, herein, we use petrographic and cathodoluminescence (CL) images of such textures and growth zones to guide high spatial resolution secondary ion mass spectroscopy (SIMS) oxygen isotope analyses (10 µm spot) and spatially correlated fluid inclusion microthermometric measurements on successive quartz bands in contemporary Te-rich and Te-poor adularia-sericite (-quartz) epithermal Au-Ag vein deposits in northeastern China. The results show that large positive oxygen isotope shifts from –7.1 to +7.7‰ in quartz rims are followed by precipitation of Au-Ag telluride minerals in the Te-rich deposit, whereas small oxygen isotope shifts of only 4‰ (–2.2 to +1.6‰) were detected in quartz associated with Au-Ag minerals in the Te-poor deposits. Moreover, fluid-inclusion homogenization temperatures are higher in comb quartz rims (avg. 266.4 to 277.5 °C) followed by Au-Ag telluride minerals than in previous stages (~250 °C) in the Te-rich deposit. The Te-poor deposit has a consistent temperature (~245 °C) in quartz that pre- and postdates Au-Ag minerals. Together, the coupled increase in oxygen isotope ratios and homogenization temperatures followed by precipitation of Au-Ag tellurides strongly supports that inputs of magmatic fluid containing Au, Ag, and Te into barren meteoric water-dominated flow systems are critical to the formation of Te-rich adularia-sericite epithermal Au-Ag deposits. In contrast, Te-poor adularia-sericite epithermal Au-Ag deposits show little or no oxygen isotope or fluid-inclusion evidence for inputs of magmatic fluid.more » « less
-
The genomics approach to materials, heralded by increasingly accurate density functional theory (DFT) calculations conducted on thousands of crystalline compounds, has led to accelerated material discovery and property predictions. However, so far, amorphous materials have been largely excluded from this as these systems are notoriously difficult to simulate. Here, we study amorphous Ta2O5 thin films mixed with Al2O3, SiO2, Sc2O3, TiO2, ZnO, ZrO2, Nb2O5, and HfO2 to identify their crystalline structure upon post-deposition annealing in air both experimentally and with simulations. Using the Materials Project open database, phase diagrams based on DFT calculations are constructed for the mixed oxide systems and the annealing process is evaluated via grand potential diagrams with varying oxygen chemical potential. Despite employing calculations based on crystalline bulk materials, the predictions agree well with the experimentally observed crystallized phases of the amorphous thin films. In the absence of ternary phases, the dopant acts as an amorphizer agent increasing the thermal stability of Ta2O5. The least efficient amorphizer agent is found to be Nb2O5, for which the cation has similar chemical properties to those of Ta in Ta2O5. These results show that DFT calculations can be applied for the prediction of crystallized structures of annealed amorphous materials. This could pave the way for accelerated in silico material discovery and property predictions using the powerful genomic approach for amorphous oxide coatings employed in a wide range of applications such as optical coatings, energy storage, and electronic devices.more » « less
-
null (Ed.)We report the sputter deposition of Cu-7V and Cu-27V (at.%) alloy films in an attempt to yield a “clean” alloy to investigate nanocrystalline stability. Films grown in high vacuum chambers can mitigate processing contaminates which convolute the identification of nanocrystalline stability mechanism(s). The initial films were very clean with carbon and oxygen contents ranging between ~0.01 and 0.38 at.%. Annealing at 400 °C/1 h facilitated the clustering of vanadium at high-angle grain boundary triple junctions. At 800 °C/1 h annealing, the Cu-7V film lost its nanocrystalline grain sizes with the vanadium partitioned to the free surface; the Cu-27V retained its nanocrystalline grains with vanadium clusters in the matrix, but surface solute segregation was present. Though the initial alloy and vacuum annealing retained the low contamination levels sought, the high surface area-to-volume ratio of the film, coupled with high segregation tendencies, enabled this system to phase separate in such a manner that the stability mechanisms that were to be studied were lost at high temperatures. This illustrates obstacles in using thin films to address nanocrystalline stability.more » « less
An official website of the United States government

