skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gene expression response under thermal stress in two Hawaiian corals is dominated by ploidy and genotype
Abstract Transcriptome data are frequently used to investigate coral bleaching; however, the factors controlling gene expression in natural populations of these species are poorly understood. We studied two corals,Montipora capitataandPocillopora acuta, that inhabit the sheltered Kāne'ohe Bay, Hawai'i.M. capitatacolonies in the bay are outbreeding diploids, whereasP. acutais a mixture of clonal diploids and triploids. Populations were sampled from six reefs and subjected to either control (no stress), thermal stress, pH stress, or combined pH and thermal stress treatments. RNA‐seq data were generated to test two competing hypotheses: (1) gene expression is largely independent of genotype, reflecting a shared treatment‐driven response (TDE) or, (2) genotype dominates gene expression, regardless of treatment (GDE). Our results strongly support the GDE model, even under severe stress. We suggest that post‐transcriptional processes (e.g., control of translation, protein turnover) modify the signal from the transcriptome, and may underlie the observed differences in coral bleaching sensitivity via the downstream proteome and metabolome.  more » « less
Award ID(s):
2128073
PAR ID:
10545928
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Ecology and Evolution
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
7
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is important to consider flow rate explicitly in coral growth and bleaching studies across multiple species with differing life histories to guide coral conservation, management and captive culture. We quantified growth rates and coral bleaching responses to thermal stress (approx. 18 DHW) in flow-through aquaria with various current velocities to test whether flow conditions alter experimental outcomes. Across natural flow rates (< 1 to over 50 cm/sec), Montipora capitata, Pocillopora acuta, and Pocillopora meandrina showed increased growth and bleaching recovery at intermediate flow rates. Growth rates for all species increased from no flow to intermediate (50–100 turnovers-per-hour, ~ 10–30 cm/s), but then decreased at highest flow (> 190 tph, > 50 cm/s) although this trend was not significant for P. meandrina. The flow treatment with highest recovery from temperature stress differed across species, ranging from 4 tph in the flow-loving P. meandrina to 210 tph in the lagoonal M. capitata, indicating that natural flow regime alone is not predictive. Fragments from the same individual (e.g., P. acuta colony 8) held under identical thermal conditions continue bleaching and die under one flow regime (4 tph), whereas they recover from bleaching (30 tph) or grow fastest (105 tph) under different flow treatments. Flow is rarely reported in the literature, but uncontrolled flow effects may help to explain some of the variation in coral bleaching results reported across the literature. Significant differences among individual colonies, and colony-by-flow interactions, preclude generalizations beyond that flow rates can alter the outcome of both coral growth and bleaching experiments. 
    more » « less
  2. null (Ed.)
    Understanding the response of the coral holobiont to environmental change is crucial to inform conservation efforts. The most pressing problem is “coral bleaching,” usually precipitated by prolonged thermal stress. We used untargeted, polar metabolite profiling to investigate the physiological response of the coral species Montipora capitata and Pocillopora acuta to heat stress. Our goal was to identify diagnostic markers present early in the bleaching response. From the untargeted UHPLC-MS data, a variety of co-regulated dipeptides were found that have the highest differential accumulation in both species. The structures of four dipeptides were determined and showed differential accumulation in symbiotic and aposymbiotic (alga-free) populations of the sea anemone Aiptasia ( Exaiptasia pallida ), suggesting the deep evolutionary origins of these dipeptides and their involvement in symbiosis. These and other metabolites may be used as diagnostic markers for thermal stress in wild coral. 
    more » « less
  3. null (Ed.)
    Understanding the response of the coral holobiont to environmental change is crucial to inform conservation efforts. The most pressing problem is “coral bleaching,” usually precipitated by prolonged thermal stress. We used untargeted, polar metabolite profiling to investigate the physiological response of the coral species Montipora capitata and Pocillopora acuta to heat stress. Our goal was to identify diagnostic markers present early in the bleaching response. From the untargeted UHPLC-MS data, a variety of co-regulated dipeptides were found that have the highest differential accumulation in both species. The structures of four dipeptides were determined and showed differential accumulation in symbiotic and aposymbiotic (alga-free) populations of the sea anemone Aiptasia (Exaiptasia pallida), suggesting the deep evolutionary origins of these dipeptides and their involvement in symbiosis. These and other metabolites may be used as diagnostic markers for thermal stress in wild coral. 
    more » « less
  4. Background Corals, which form the foundation of biodiverse reef ecosystems, are under threat from warming oceans. Reefs provide essential ecological services, including food, income from tourism, nutrient cycling, waste removal, and the absorption of wave energy to mitigate erosion. Here, we studied the coral thermal stress response using network methods to analyze transcriptomic and polar metabolomic data generated from the Hawaiian rice coral Montipora capitata . Coral nubbins were exposed to ambient or thermal stress conditions over a 5-week period, coinciding with a mass spawning event of this species. The major goal of our study was to expand the inventory of thermal stress-related genes and metabolites present in M. capitata and to study gene-metabolite interactions. These interactions provide the foundation for functional or genetic analysis of key coral genes as well as provide potentially diagnostic markers of pre-bleaching stress. A secondary goal of our study was to analyze the accumulation of sex hormones prior to and during mass spawning to understand how thermal stress may impact reproductive success in M. capitata . Methods M. capitata was exposed to thermal stress during its spawning cycle over the course of 5 weeks, during which time transcriptomic and polar metabolomic data were collected. We analyzed these data streams individually, and then integrated both data sets using MAGI (Metabolite Annotation and Gene Integration) to investigate molecular transitions and biochemical reactions. Results Our results reveal the complexity of the thermal stress phenome in M. capitata , which includes many genes involved in redox regulation, biomineralization, and reproduction. The size and number of modules in the gene co-expression networks expanded from the initial stress response to the onset of bleaching. The later stages involved the suppression of metabolite transport by the coral host, including a variety of sodium-coupled transporters and a putative ammonium transporter, possibly as a response to reduction in algal productivity. The gene-metabolite integration data suggest that thermal treatment results in the activation of animal redox stress pathways involved in quenching molecular oxygen to prevent an overabundance of reactive oxygen species. Lastly, evidence that thermal stress affects reproductive activity was provided by the downregulation of CYP-like genes and the irregular production of sex hormones during the mass spawning cycle. Overall, redox regulation and metabolite transport are key components of the coral animal thermal stress phenome. Mass spawning was highly attenuated under thermal stress, suggesting that global climate change may negatively impact reproductive behavior in this species. 
    more » « less
  5. Abstract Coral reefs are essential for the foundation of marine ecosystems. However, ocean acidification (OA), driven by rising atmospheric carbon dioxide (CO2) threatens coral growth and biological homeostasis. This study examines two Hawaiian coral species—Montipora capitataandPocillopora acutato elevated pCO2simulating OA. Utilizing pH and O2microsensors under controlled light and dark conditions, this work characterized interspecific concentration boundary layer (CBL) traits and quantified material fluxes under ambient and elevated pCO2. The results of this study revealed that under increased pCO2,P. acutashowed a significant reduction in dark proton efflux, followed by an increase in light O2flux, suggesting reduced calcification and enhanced photosynthesis. In contrast,M. capitatadid not show any robust evidence of changes in either flux parameters under similar increased pCO2conditions. Statistical analyses using linear models revealed several significant interactions among species, treatment, and light conditions, identifying physical, chemical, and biological drivers of species responses to increased pCO2. This study also presents several conceptual models that correlate the CBL dynamics measured here with calcification and metabolic processes, thereby justifying our findings. We indicate that elevated pCO2exacerbates microchemical gradients in the CBL and may threaten calcification in vulnerable species such asP. acuta, while highlighting the resistance ofM. capitata. Therefore, this study advances our understanding of how interspecific microenvironmental processes could influence coral responses to changing ocean chemistry. 
    more » « less