skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Noise Suppression of LSTM algorithm combined with Kalman filter for Agriculture Automation
An immense volume of data is produced by sensor devices in the fields of aquaponics, hydroponics, and soil-based food production, where these devices track various environmental factors. Data stream mining is the method of retrieving data from fast-sampled data sources that are constantly streaming. The accuracy of data obtained through data stream mining is largely determined by the algorithm utilized to filter out noise. For threshold-based automation, an actuator can be activated when the value of sensor data is above a permissible threshold. Noise from sensors may activate the actuator. Several statistical and machine learning-based noise-suppression algorithms have been proposed in the literature. They have been evaluated based on the mean squared error metric (MSE). The Long Short-Term Memory – LSTM filter (MSE: 0.000999943) performs better noise suppression than other traditional filters – Kalman (MSE: 0.0015982). We propose a new noise suppression filter – LSTM combined with Kalman (LSTM-KF). In LSTM-KF, the Kalman filter acts as an encoder and the LSTM becomes the decoder, resulting in a significantly lower MSE – 0.000080789592. The LSTM-KF is installed in our threshold-based aquaponics automation to maximize sustainable food production at minimum cost.  more » « less
Award ID(s):
2131269
PAR ID:
10546081
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9781450398329
Page Range / eLocation ID:
230 to 234
Subject(s) / Keyword(s):
Machine Learning, Kalman Filter, Agriculture Automation
Format(s):
Medium: X
Location:
Stockholm Sweden
Sponsoring Org:
National Science Foundation
More Like this
  1. Enormous amounts of data are generated each day by sensor devices. In agriculture, these devices continuously monitor numerous environmental properties in the fields of aquaponics, hydroponics, and soil-based food production. Data stream mining is the process of extracting data from continuous, rapidly sampled data sources. The data accuracy that can be achieved in data stream mining is highly dependent on the algorithm chosen to suppress noise. For threshold-based automation, an actuator can be activated when the value of sensor data is above a permissible threshold. Noise from sensors may activate the actuator. Several statistical and machine learning-based noise- suppression algorithms have been proposed in the literature. The proposed LSTM (Long Short-Term Memory) filter performs better noise suppression than other traditional filters – Kalman and moving average filters. The LSTM filter is installed in our threshold-based aquaponics automation to maximize sustainable food production at minimum cost. 
    more » « less
  2. null (Ed.)
    Recursive neural networks can be trained to serve as a memory for robots to perform intelligent behaviors when localization is not available. This paper develops an approach to convert a spatial map, represented as a scalar field, into a trained memory represented by the long short-term memory (LSTM) neural network. The trained memory can be retrieved through sensor measurements collected by robots to achieve intelligent behaviors, such as tracking level curves in the map. Memory retrieval does not require robot locations. The retrieved information is combined with sensor measurements through a Kalman filter enabled by the LSTM (LSTM-KF). Furthermore, a level curve tracking control law is designed. Simulation results show that the LSTM-KF and the control law are effective to generate level curve tracking behaviors for single-robot and multi-robot teams. 
    more » « less
  3. In this work, we investigate the problem of level curve tracking in unknown scalar fields using a limited number of mobile robots. We design and implement a long short-term memory (LSTM) enabled control strategy for a mobile sensor network to detect and track desired level curves. Based on the existing work of cooperative Kalman filter, we design an LSTM-enhanced Kalman filter that utilizes the sensor measurements and a sequence of past fields and gradients to estimate the current field value and gradient. We also design an LSTM model to estimate the Hessian of the field. The LSTM-enabled strategy has some benefits such as it can be trained offline on a collection of level curves in known fields prior to deployment, where the trained model will enable the mobile sensor network to track level curves in unknown fields for various applications. Another benefit is that we can train using larger resources to get more accurate models while utilizing a limited number of resources when the mobile sensor network is deployed in production. Simulation results show that this LSTM-enabled control strategy successfully tracks the level curve using a mobile multi-robot sensor network. 
    more » « less
  4. In this paper, we present a Long Short-Term Memory (LSTM)-based Kalman Filter for data assimilation of a 2D spatio-temporally varying depth-averaged ocean flow field for underwater glider path planning. The data source to the filter combines both the Eulerian flow map with the Lagrangian mobile sensor data stream. The depth-averaged flow is modeled as two components, the tidal and the non-tidal flow component. The tidal flow is modeled with ADCIRC (Advanced Three-Dimensional Circulation Model), while the non-tidal flow field is modeled by a set of spatial basis functions and their time series coefficients. The spatial basis functions are the principal modes derived by performing EOF (Empirical Orthogonal Functions) analysis on the historical surface flow field measured by high frequency radar (HFR), and the temporal coefficients of the spatial basis function are modeled by an LSTM neural network. The Kalman Filter is performed to combine the dynamics derived from the LSTM network, and the observations from the glider flow estimation data. Simulation results demonstrate that the proposed data assimilation method can give flow field prediction of reasonable accuracy. 
    more » « less
  5. This paper addresses challenges in agricultural unmanned aerial vehicle (A-UAV) positioning, emphasizing the significance of accurate position estimation for applications like coverage path planning under depended noises. The study introduces a solution involving a PCA-based maximum correntropy Kalman filter (PCA-MCKF) to mitigate issues such as lowaltitude flight control, inaccurate position estimation due to coloured noise, and non-Gaussian distribution, including wind effects. Comparative analysis with traditional methods, such as Kalman filter (KF), PCA-KF, and PCA-MCKF, is conducted using four rotor-wing UAVs with linear and nonlinear dynamical models. The paper employs interval type-2 Fuzzy PID as an intelligent controller method and constant acceleration and constant velocity manoeuvre models for estimation. Root mean square error is used as the accuracy metric, and real-time simulations in Webots demonstrate the superiority of the proposed PCA-MCKF in enhancing agricultural UAV applications. 
    more » « less