In the rapidly evolving domain of software engineering (SE), Large Language Models (LLMs) are increasingly leveraged to automate developer support. Open source LLMs have grown competitive with pro- prietary models such as GPT-4 and Claude-3, without the associated financial and accessibility constraints. This study investigates whether state of the art open source LLMs including Solar-10.7B, CodeLlama-7B, Mistral-7B, Qwen2-7B, StarCoder2-7B, and LLaMA3-8B can generate responses to technical queries that align with those crafted by human experts. Leveraging retrieval augmented generation (RAG) and targeted fine tuning, we evaluate these models across critical performance dimen- sions, such as semantic alignment and contextual fluency. Our results show that Solar-10.7B, particularly when paired with RAG and fine tun- ing, most closely replicates expert level responses, o!ering a scalable and cost e!ective alternative to commercial models. This vision paper high- lights the potential of open-source LLMs to enable robust and accessible AI-powered developer assistance in software engineering.
more »
« less
Personality of AI
This research paper delves into the evolving landscape of fine-tuning large language models (LLMs) to align with human users, extending beyond basic alignment to propose "personality alignment" for language models in organizational settings. Acknowledging the impact of training methods on the formation of undefined personality traits in AI models, the study draws parallels with human fitting processes using personality tests. Through an original case study, we demonstrate the necessity of personality fine-tuning for AIs and raise intriguing questions about applying human-designed tests to AIs, engineering specialized AI personality tests, and shaping AI personalities to suit organizational roles. The paper serves as a starting point for discussions and developments in the burgeoning field of AI personality alignment, offering a foundational anchor for future exploration in human-machine teaming and co-existence.
more »
« less
- Award ID(s):
- 2131269
- PAR ID:
- 10546090
- Publisher / Repository:
- Springer LNCS
- Date Published:
- Subject(s) / Keyword(s):
- AI LLM Prompt Engineering
- Format(s):
- Medium: X
- Location:
- Zakopane, Poland
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The alignment of large language models (LLMs) with human values is critical as these models become increasingly integrated into various societal and decision-making processes. Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters, but these approaches are often computationally expensive and impractical when models are frozen or inaccessible for parameter modification. In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment. While the existing literature has shown empirical promise of prompt optimization, its theoretical underpinning remains under-explored. We address this gap by formulating prompt optimization as an optimization problem and try to provide theoretical insights into the optimality of such a framework. To analyze the performance of the prompt optimization, we study theoretical suboptimality bounds and provide insights in terms of how prompt optimization depends upon the given prompter and target model. We also provide empirical validation through experiments on various datasets, demonstrating that prompt optimization can effectively align LLMs, even when parameter fine-tuning is not feasible.more » « less
-
Booster: Tackling Harmful Fine-tuing for Large Language Models via Attenuating Harmful Perturbation,Harmful fine-tuning attack poses serious safety concerns for large language models’ fine-tuning-as-a-service. While existing defenses have been proposed to mitigate the issue, their performances are still far away from satisfactory, and the root cause of the problem has not been fully recovered. To this end, we in this paper show that harmful perturbation over the model weights could be a probable cause of alignment-broken. In order to attenuate the negative impact of harmful perturbation, we propose an alignment-stage solution, dubbed Booster. Technically, along with the original alignment loss, we append a loss regularizer in the alignment stage’s optimization. The regularizer ensures that the model’s harmful loss reduction after the simulated harmful perturbation is attenuated, thereby mitigating the subsequent fine-tuning risk. Empirical results show that Booster can effectively reduce the harmful score of the fine-tuned models while maintaining the performance of downstream tasks. Our code is available at https://github.com/git-disl/Booster.more » « less
-
Aligning large language models (LLMs) with human objectives is crucial for real-world applications. However, fine-tuning LLMs for alignment often suffers from unstable training and requires substantial computing resources. Test-time alignment techniques, such as prompting and guided decoding, do not modify the underlying model, and their performance remains dependent on the original model's capabilities. To address these challenges, we propose aligning LLMs through representation editing. The core of our method is to view a pre-trained autoregressive LLM as a discrete-time stochastic dynamical system. To achieve alignment for specific objectives, we introduce external control signals into the state space of this language dynamical system. We train a value function directly on the hidden states according to the Bellman equation, enabling gradient-based optimization to obtain the optimal control signals at test time. Our experiments demonstrate that our method outperforms existing test-time alignment techniques while requiring significantly fewer resources compared to fine-tuning methods. Our code is available at https://github.com/Lingkai-Kong/RE-Control.more » « less
-
Reinforcement learning has seen wide success in finetuning large language models to better align with instructions via human feedback. The so-called algorithm, Reinforcement Learning with Human Feedback (RLHF) demonstrates impressive performance on the GPT series models. However, the underlying reinforcement learning algorithm is complex and requires additional training for reward and value networks. In this paper, we consider an alternative approach: converting feedback to instruction by relabeling the original one and training the model for better alignment in a supervised manner. Such an algorithm doesn’t require any additional parameters except for the original language model and maximally reuses the pretraining pipeline. To achieve this, we formulate instruction alignment problem for language models as a goal-reaching problem in decision making. We propose Hindsight Instruction Relabeling (HIR), a novel algorithm for aligning language models with instructions. The resulting two-stage algorithm shed light to a family of reward-free approaches that utilize the hindsightly relabeled instructions based on feedback. We evaluate the performance of HIR extensively on 12 challenging BigBench reasoning tasks and show that HIR outperforms the baseline algorithms and is comparable to or even surpasses supervised fine-tuning. The implementation of HIR is available at https://github.com/tianjunz/HIR.more » « less
An official website of the United States government

