skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microneedle sensors for dermal interstitial fluid analysis
Abstract The rapid advancement in personalized healthcare has driven the development of wearable biomedical devices for real-time biomarker monitoring and diagnosis. Traditional invasive blood-based diagnostics are painful and limited to sporadic health snapshots. To address these limitations, microneedle-based sensing platforms have emerged, utilizing interstitial fluid (ISF) as an alternative biofluid for continuous health monitoring in a minimally invasive and painless manner. This review aims to provide a comprehensive overview of microneedle sensor technology, covering microneedle design, fabrication methods, and sensing strategy. Additionally, it explores the integration of monitoring electronics for continuous on-body monitoring. Representative applications of microneedle sensing platforms for both monitoring and therapeutic purposes are introduced, highlighting their potential to revolutionize personalized healthcare. Finally, the review discusses the remaining challenges and future prospects of microneedle technology. Graphical Abstract  more » « less
Award ID(s):
2145802
PAR ID:
10546132
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Med-X
Volume:
2
Issue:
1
ISSN:
2731-8710
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent advancements in wearable photonic sensors have marked a transformative era in healthcare, enabling non‐invasive, real‐time, portable, and personalized medical monitoring. These sensors leverage the unique properties of light toward high‐performance sensing in form factors optimized for real‐world use. Their ability to offer solutions to a broad spectrum of medical challenges – from routine health monitoring to managing chronic conditions, inspires a rapidly growing translational market. This review explores the design and development of wearable photonic sensors toward various healthcare applications. The photonic sensing strategies that power these technologies are first presented, alongside a discussion of the factors that define optimal use‐cases for each approach. The means by which these mechanisms are integrated into wearable formats are then discussed, with considerations toward material selection for comfort and functionality, component fabrication, and power management. Recent developments in the space are detailed, accounting for both physical and chemical stimuli detection through various non‐invasive biofluids. Finally, a comprehensive situational overview identifies critical challenges toward translation, alongside promising solutions. Associated future outlooks detail emerging trends and mechanisms that stand to enable the integration of these technologies into mainstream healthcare practice, toward advancing personalized medicine and improving patient outcomes. 
    more » « less
  2. Recent advances in skin-interfaced wearable sweat sensors enable the noninvasive, real-time monitoring of biochemical signals associated with health and wellness. These wearable platforms leverage microfluidic channels, biochemical sensors, and flexible electronics to enable the continuous analysis of sweat-based biomarkers such as electrolytes, metabolites, and hormones. As this field continues to mature, the potential of low-cost, continuous personalized health monitoring enabled by such wearable sensors holds significant promise for addressing some of the formidable obstacles to delivering comprehensive medical care in under-resourced settings. This Perspective highlights the transformative potential of wearable sweat sensing for providing equitable access to cutting-edge healthcare diagnostics, especially in remote or geographically isolated areas. It examines the current understanding of sweat composition as well as recent innovations in microfluidic device architectures and sensing strategies by showcasing emerging applications and opportunities for innovation. It concludes with a discussion on expanding the utility of wearable sweat sensors for clinically relevant health applications and opportunities for enabling equitable access to innovation to address existing health disparities. 
    more » « less
  3. Abstract Microfluidic‐based wearable electrochemical sensors represent a transformative approach to non‐invasive, real‐time health monitoring through continuous biochemical analysis of body fluids such as sweat, saliva, and interstitial fluid. These systems offer significant potential for personalized healthcare and disease management by enabling real‐time detection of key biomarkers. However, challenges remain in optimizing microfluidic channel design, ensuring consistent biofluid collection, balancing high‐resolution fabrication with scalability, integrating flexible biocompatible materials, and establishing standardized validation protocols. This review explores advancements in microfluidic design, fabrication techniques, and integrated electrochemical sensors that have improved sensitivity, selectivity, and durability. Conventional photolithography, 3D printing, and laser‐based fabrication methods are compared, highlighting their mechanisms, advantages, and trade‐offs in microfluidic channel production. The application section summarizes strategies to overcome variability in biofluid composition, sensor drift, and user adaptability through innovative solutions such as hybrid material integration, self‐powered systems, and AI‐assisted data analysis. By analyzing recent breakthroughs, this paper outlines critical pathways for expanding wearable sensor technologies and achieving seamless operation in diverse real‐world settings, paving the way for a new era of digital health. 
    more » « less
  4. Abstract Medical devices play a crucial role in modern healthcare, providing innovative solutions for diagnosing, preventing, monitoring, and treating ailments. Artificial Intelligence is transforming the field of medical devices, offering unprecedented opportunities through diagnostic accuracy, personalized treatment plans, and enhancing patient outcomes. This review outlines the applications of artificial intelligence-based medical devices in healthcare specialties, especially in dentistry, medical imaging, ophthalmology, mental health, autism spectrum disorder diagnosis, oncology, and general medicine. Specifically, the review highlights advancements such as improved diagnostic accuracy, tailored treatment planning, and enhanced clinical outcomes in the above-mentioned applications. Regulatory approval remains a key issue, where medical devices must be approved or cleared by the United States Food and Drug Administration to establish their safety and efficacy. The regulatory guidance pathway for artificial intelligence-based medical devices is presented and moreover the critical technical, ethical, and implementation challenges that must be addressed for large-scale adoption are discussed. The review concludes that the intersection of artificial intelligence with the medical device domain and internet-enabled or enhanced technology, such as biotechnology, nanotechnology, and personalized therapeutics, enables an enormous opportunity to accelerate customized and patient-centered care. By evaluating these advancements and challenges, the study aims to present insights into the future trajectory of smart medical technologies and their role in advancing personalized, patient-centered care. 
    more » « less
  5. Abstract Biosensors are analytical tools for monitoring various parameters related to living organisms, such as humans and plants. Liquid metals (LMs) have emerged as a promising new material for biosensing applications in recent years. LMs have attractive physical and chemical properties such as deformability, high thermal and electrical conductivity, low volatility, and low viscosity. LM‐based biosensors represent a new strategy in biosensing particularly for wearable and real‐time sensing. While early demonstrations of LM biosensors focus on monitoring physical parameters such as strain, motion, and temperature, recent examples show LM can be an excellent sensing material for biochemical and biomolecular detection as well. In this review, the recent progress of LM‐based biosensors for personalized healthcare and disease monitoring via both physical and biochemical signaling is survey. It is started with a brief introduction of the fundamentals of biosensors and LMs, followed by a discussion of different mechanisms by which LM can transduce biological or physiological signals. Next, it is reviewed example LM‐based biosensors that have been used in real biological systems, ranging from real‐time on‐skin physiological monitoring to target‐specific biochemical detection. Finally, the challenges and future directions of LM‐integrated biosensor platforms is discussed. 
    more » « less