Abstract Alternative splicing (AS) of pre-mRNA plays a crucial role in tissue-specific gene regulation, with disease implications due to splicing defects. Predicting and manipulating AS can therefore uncover new regulatory mechanisms and aid in therapeutics design. We introduce TrASPr+BOS, a generative AI model with Bayesian Optimization for predicting and designing RNA for tissue-specific splicing outcomes. TrASPr is a multi-transformer model that can handle different types of AS events and generalize to unseen cellular conditions. It then serves as an oracle, generating labeled data to train a Bayesian Optimization for Splicing (BOS) algorithm to design RNA for condition-specific splicing outcomes. We show TrASPr+BOS outperforms existing methods, enhancing tissue-specific AUPRC by up to 2.4 fold and capturing tissue-specific regulatory elements. We validate hundreds of predicted novel tissue-specific splicing variations and confirm new regulatory elements using dCas13. We envision TrASPr+BOS as a light yet accurate method researchers can probe or adopt for specific tasks.
more »
« less
A simple method to visualize pre-mRNA splicing with the naked eye using a genetically encoded visual splicing reporter
A genetically encoded splicing reporter allows naked-eye visualization of pre-mRNA splicing and requires no expensive equipment or substrate.
more »
« less
- Award ID(s):
- 2014408
- PAR ID:
- 10546133
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Plant Physiology
- Volume:
- 196
- Issue:
- 2
- ISSN:
- 0032-0889
- Format(s):
- Medium: X Size: p. 726-730
- Size(s):
- p. 726-730
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Pre‐mRNA splicing is an essential step for the regulation of gene expression. In order to specifically capture splicing variants in plants for genome‐wide association studies (GWAS), we developed a software tool to quantify and visualise Variations of Splicing in Population (VaSP).VaSP can quantify splicing variants from short‐read RNA‐seq datasets and discover genotype‐specific splicing (GSS) events, which can be used to prioritise causal pre‐mRNA splicing events in GWAS. We applied our method to an RNA‐seq dataset with 328 samples from 82 genotypes from a rice diversity panel exposed to optimal and saline growing conditions.In total, 764 significant GSS events were identified in salt stress conditions. GSS events were used as markers for a GWAS with the shoot Na+accumulation, which identified six GSS events in five genes significantly associated with the shoot Na+content. Two of these genes,OsNUC1andOsRAD23emerged as top candidate genes with splice variants that exhibited significant divergence between the variants for shoot growth under salt stress conditions.VaSP is a versatile tool for alternative splicing analysis in plants and a powerful tool for prioritising candidate causal pre‐mRNA splicing and corresponding genomic variations in GWAS.more » « less
-
Abstract Pathogenic variants in the human Factor VIII (F8) gene cause Hemophilia A (HA). Here, we investigated the impact of 97 HA-causing single-nucleotide variants on the splicing of 11 exons from F8. For the majority of F8 exons, splicing was insensitive to the presence of HA-causing variants. However, splicing of several exons, including exon-16, was impacted by variants predicted to alter exonic splicing regulatory sequences. Using exon-16 as a model, we investigated the structure–function relationship of HA-causing variants on splicing. Intriguingly, RNA chemical probing analyses revealed a three-way junction structure at the 3′-end of intron-15 (TWJ-3–15) capable of sequestering the polypyrimidine tract. We discovered antisense oligonucleotides (ASOs) targeting TWJ-3–15 partially rescue splicing-deficient exon-16 variants by increasing accessibility of the polypyrimidine tract. The apical stem loop region of TWJ-3–15 also contains two hnRNPA1-dependent intronic splicing silencers (ISSs). ASOs blocking these ISSs also partially rescued splicing. When used in combination, ASOs targeting both the ISSs and the region sequestering the polypyrimidine tract, fully rescue pre-mRNA splicing of multiple HA-linked variants of exon-16. Together, our data reveal a putative RNA structure that sensitizes F8 exon-16 to aberrant splicing.more » « less
-
Summary Nuclear speckles are membraneless organelles implicated in multiple RNA processing steps. In this work, we systematically characterize the sequence logic determining RNA localization to nuclear speckles. We find extensive similarities between the speckle localization code and the RNA splicing code, even for transcripts that do not undergo splicing. Specifically, speckle localization is enhanced by the presence of unspliced exon-like or intron-like sequence features. We demonstrate that interactions required for early splicesomal complex assembly contribute to speckle localization. We also show that speckle localization of isolated endogenous exons is reduced by disease-associated single nucleotide variants. Finally, we find that speckle localization strongly correlates with splicing kinetics of splicing-competent constructs and is tightly linked to the decision between exon inclusion and skipping. Together, these results suggest a model in which RNA speckle localization is associated with the formation of the early spliceosomal complex and enhances the efficiency of splicing reactions. HighlightsSequences containing hallmarks of pre-mRNA dictate speckle localizationRNA speckle localization is coupled to early spliceosome assemblyDisease-associated single nucleotide variants reduce localization of isolated exonsRNA speckle localization strongly correlates with splicing kineticsGraphical Abstractmore » « less
-
Light signals perceived by a group of photoreceptors have profound effects on the physiology, growth, and development of plants. The red/far-red light–absorbing phytochromes (phys) modulate these aspects by intricately regulating gene expression at multiple levels. Here, we report the identification and functional characterization of an RNA-binding splicing factor, SWAP1 (SUPPRESSOR-OF-WHITE-APRICOT/SURP RNA-BINDING DOMAIN-CONTAINING PROTEIN1). Loss-of-function swap1-1 mutant is hyposensitive to red light and exhibits a day length–independent early flowering phenotype. SWAP1 physically interacts with two other splicing factors, (SFPS) SPLICING FACTOR FOR PHYTOCHROME SIGNALING and (RRC1) REDUCED RED LIGHT RESPONSES IN CRY1CRY2 BACKGROUND 1 in a light-independent manner and forms a ternary complex. In addition, SWAP1 physically interacts with photoactivated phyB and colocalizes with nuclear phyB photobodies. Phenotypic analyses show that the swap1sfps , swap1rrc1, and sfpsrrc1 double mutants display hypocotyl lengths similar to that of the respective single mutants under red light, suggesting that they function in the same genetic pathway. The swap1sfps double and swap1sfpsrrc1 triple mutants display pleiotropic phenotypes, including sterility at the adult stage. Deep RNA sequencing (RNA-seq) analyses show that SWAP1 regulates the gene expression and pre–messenger RNA (mRNA) alternative splicing of a large number of genes, including those involved in plant responses to light signaling. A comparative analysis of alternative splicing among single, double, and triple mutants showed that all three splicing factors coordinately regulate the alternative splicing of a subset of genes. Our study uncovered the function of a splicing factor that modulates light-regulated alternative splicing by interacting with photoactivated phyB and other splicing factors.more » « less
An official website of the United States government
