In montane areas, climate change can shift tree species distributions upslope over time which can affect forest ecosystem structure and functioning. Seedlings of low-elevation temperate broadleaf trees establishing beyond their ranges at high elevations need to overcome both herbivore pressure and soil nutrient limitations. To assess the influence of these two stressors, we quantified leaf and stem herbivory, soil and foliar nutrient status, and two-year survival of experimentally grown seedlings of two hardwood species, sugar maple (Acer saccharum) and American beech (Fagus grandifolia) along elevation gradients in the Green Mountains of Vermont, USA. While insect foliar herbivory was reduced on maple seedlings growing beyond range boundaries, suggesting enemy escape, the opposite pattern was observed for beech. Mammalian browsing increased with elevation for both species. In general, foliar nutrient concentrations and resource utilization (that is, the relationship between soil nutrient availability and foliar nutrient status) declined with elevation for both species (although more so for maple, especially calcium), while toxic foliar aluminum concentrations increased for maple. Survival decreased with elevation for both species, but especially for sugar maple, linked more to declining foliar nutrient status than herbivory at higher elevations. Thus, the effects of herbivory and nutrient utilization on seedling survival can be critical for shaping tree species range shifts and, ultimately, species composition and forest ecosystem functioning.
more »
« less
Mycorrhizal fungi as critical biotic filters for tree seedling establishment during species range expansions
Abstract Global warming has been shifting climatic envelopes of many tree species to higher latitudes and elevations across the globe; however, unsuitable soil biota may inhibit tree migrations into these areas of suitable climate. Specifically, the role of mycorrhizal fungi in facilitating tree seedling establishment beyond natural species range limits has not been fully explored within forest ecosystems. We used three experiments to isolate and quantify the effects of mycorrhizal colonization and common mycorrhizal networks (CMN) on tree seedling survival and growth across (within and beyond) the elevational ranges of two dominant tree species in northeastern North America, which were associated with either arbuscular mycorrhiza (AMF,Acer saccharum) or ectomycorrhiza (EMF,Fagus grandifolia). In order to quantify the influence of mycorrhiza on seedling establishment independent of soil chemistry and climate, we grew seedlings in soils from within and beyond our study species ranges in a greenhouse experiment (GE) as well as in the field using a soil translocation experiment (STE) and another field experiment manipulating seedling connections to potential CMNs (CMNE). Root length colonized, seedling survival and growth, foliar nutrients, and the presence of potential root pathogens were examined as metrics influencing plant performance across species' ranges. Mycorrhizal inoculum from within species ranges, but not from outside, increased seedling survival and growth in a greenhouse setting; however, only seedling survival, and not growth, was significantly improved in field studies. Sustained potential connectivity to AMF networks increased seedling survival across the entire elevational range ofA. saccharum. Although seedlings disconnected from a potential CMN did not suffer decreased foliar nutrient levels compared with connected seedlings, disconnected AM seedlings, but not EM seedlings, had significantly higher aluminum concentrations and more potential pathogens present. Our results indicate that mycorrhizal fungi may facilitate tree seedling establishment beyond species range boundaries in this forested ecosystem and that the magnitude of this effect is modulated by the dominant mycorrhizal type present (i.e., AM vs. EM). Thus, despite changing climate conditions beyond species ranges, a lack of suitable mutualists can still limit successful seedling establishment and stall adaptive climate‐induced shifts in tree species distributions.
more »
« less
- Award ID(s):
- 1759724
- PAR ID:
- 10546409
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecological Monographs
- ISSN:
- 0012-9615
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Under drought conditions, arbuscular mycorrhizal (AM) fungi may improve plant performance by facilitating the movement of water through extensive hyphal networks. When these networks interconnect neighboring plants in common mycorrhizal networks (CMNs), CMNs are likely to partition water among many individuals. The consequences of CMN-mediated water movement for plant interactions, however, are largely unknown. We set out to examine CMN-mediated interactions amongAndropogon gerardiiseedlings in a target-plant pot experiment, with watering (watered or long-term drought) and CMN status (intact or severed) as treatments. Intact CMNs improved the survival of seedlings under drought stress and mediated positive, facilitative plant interactions in both watering treatments. Watering increased mycorrhizal colonization rates and improved P uptake, particularly for large individuals. Under drought conditions, improved access to water most likely benefited neighboring plants interacting across CMNs. CMNs appear to have provided the most limiting resource within each treatment, whether P, water, or both, thereby improving survival and growth. Neighbors near large, photosynthate-fixing target plants likely benefited from their establishment of extensive hyphal networks that could access water and dissolved P within soil micropores. In plant communities, CMNs may be vital during drought, which is expected to increase in frequency, intensity, and length with climate change.more » « less
-
Aims: Climate change is expected to shift climatic envelopes of temperate tree species into boreal forests where unsuitable soils may limit range expansion. We studied several edaphic thresholds (mycorrhizae, soil chemistry) that can limit seedling establishment of two major temperate tree species, sugar maple (arbuscular mycorrhizal, AM) and American beech (ectomycorrhizal, EM). Methods: We integrate two field surveys of tree seedling density, mycorrhizal colonization, and soil chemistry in montane forests of the Adirondack and Green Mountains (Mtns) in the northeastern United States. We conducted correlation and linear breakpoint analyses to detect soil abiotic and biotic thresholds in seedling distributions across edaphic gradients. Results: In the Green Mtns, sugar maple seedling importance (an index of species relative density and frequency, IV) declined sharply with low pH (< 3.74 in mineral soil) and low mycorrhizal colonization (< 27.5% root length colonized). Sugar maple importance was highly correlated with multiple aspects of soil chemistry, while beech was somewhat sensitive to pH only; beech mycorrhizal colonization did not differ across elevation. Mycorrhizal colonization of sugar maple was positively correlated with soil pH and conspecific overstory basal area. In the Adirondacks, sugar maple importance, but not beech, plateaued above thresholds in soil calcium (~ 2 meq/100 g) and magnesium (~ 0.3 meq/100 g). Conclusions: The establishment of sugar maple, but not beech, was impeded by both biotic and abiotic soil components in montane conifer forests and by soil acidity in temperate deciduous forests. These differences in species sensitivity to edaphic thresholds will likely affect species success and future shifts in forest composition.more » « less
-
Abstract Root‐associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems wereEMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline.more » « less
-
Abstract The persistence of future forests depends on the success of tree seedlings which are experiencing increasing physiological stress from changing climate and air pollution. Although the moss layer can serve as an important substrate for tree seedlings, its potential for reducing environmental stress and enhancing the establishment of seedlings remains poorly understood. We tested if the moss layer decreased environmental stress and increased the abundance of balsam fir seedlings dominant in high-elevation forests of northeastern United States that are sensitive to changing climate and mercury deposition. We surveyed balsam fir seedling density by substrate (moss, litter, other) on 120 quadrats (1 × 1 m) in two contrasting canopy environments (in gaps and under canopies), measured seedling stress, and quantified mercury content in seedlings and substrates. We observed that, in both canopy environments, tree seedlings established on moss exhibited (i) increased density, (ii) decreased physiological stress, and (iii) higher potential to recruit into larger size classes, compared to seedlings established in litter. Regardless of canopy environment, seedling foliar mercury levels did not correspond to substrate mercury despite large differences in substrate mercury concentrations (relative to moss, litter concentrations were ~ 4-times greater and soil concentrations were ~ 6-times greater), likely reflecting the dominance of foliar over root uptake of mercury. Because the moss layer appeared to mitigate seedling drought stress, and to increase seedling establishment and recruitment compared to other substrates, these microsite effects should be considered in models predicting forest regeneration and dynamics under increased drought stress associated with the ongoing climate warming.more » « less
An official website of the United States government
