Debugging a failure usually requires reproducing it first. This can be hard for failures in production distributed systems, where bugs are exposed only by some unusual faulty events. While fault injection testing becomes popular, existing solutions are designed for bug finding. They are ineffective and inefficient to reproduce a specific failure during debugging. We explore a new type of fault injection technique for quickly reproducing a given fault-induced production failure in distributed systems. We present a tool, Anduril, that uses static causal analysis and a novel feedback-driven algorithm to quickly search the enormous fault space for the root-cause fault and timing. We evaluate Anduril on 22 real-world complex fault-induced failures from five large-scale distributed systems. Anduril reproduced all failures by identifying and injecting the root-cause faults at the right time, in a median of 8 minutes.
more »
« less
This content will become publicly available on April 16, 2025
Efficient Exposure of Partial Failure Bugs in Distributed Systems with Inferred Abstract States
Many distributed system failures, especially the notorious partial service failures, are caused by bugs that are only triggered by subtle faults at rare timing. Existing testing is inefficient in exposing such bugs. This paper presents Legolas, a fault injection testing framework designed to address this gap. To precisely simulate subtle faults, Legolas statically analyzes the system code and instruments hooks within a system. To efficiently explore numerous faults, Legolas introduces a novel notion of abstract states and automatically infers abstract states from code. During testing, Legolas designs an algorithm that leverages the inferred abstract states to make careful fault injection decisions. We applied Legolas on the latest releases of six popular, extensively tested distributed systems. Legolas found 20 new bugs that result in partial service failures.
more »
« less
- PAR ID:
- 10546455
- Publisher / Repository:
- 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24)
- Date Published:
- ISBN:
- 978-1-939133-39-7
- Format(s):
- Medium: X
- Location:
- Santa Clara, CA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-scale distributed systems must be built to anticipate and mitigate a variety of hardware and software failures. In order to build confidence that fault-tolerant systems are correctly implemented, Netflix (and similar enterprises) regularly run failure drills in which faults are deliberately injected in their production system. The combinatorial space of failure scenarios is too large to explore exhaustively. Existing failure testing approaches either randomly explore the space of potential failures randomly or exploit the "hunches" of domain experts to guide the search. Random strategies waste resources testing "uninteresting" faults, while programmer-guided approaches are only as good as human intuition and only scale with human effort. In this paper, we describe how we adapted and implemented a research prototype called lineage-driven fault injection (LDFI) to automate failure testing at Netflix. Along the way, we describe the challenges that arose adapting the LDFI model to the complex and dynamic realities of the Netflix architecture. We show how we implemented the adapted algorithm as a service atop the existing tracing and fault injection infrastructure, and present early results.more » « less
-
Distributed systems are hard to reason about largely because of uncertainty about what may go wrong in a particular execution, and about whether the system will mitigate those faults. Tools that perturb executions can help test whether a system is robust to faults, while tools that observe executions can help better understand their system-wide effects. We present Box of Pain, a tracer and fault injector for unmodified distributed systems that addresses both concerns by interposing at the system call level and dynamically reconstructing the partial order of communication events based on causal relationships. Box of Pain’s lightweight approach to tracing and focus on simulating the effects of partial failures on communication rather than the failures themselves sets it apart from other tracing and fault injection systems. We present evidence of the promise of Box of Pain and its approach to lightweight observation and perturbation of distributed systems.more » « less
-
In this paper, we i) analyze and classify real-world failures of Kubernetes (the most popular container orchestration system), ii) develop a framework to perform a fault/error injection campaign targeting the data store preserving the cluster state, and iii) compare results of our fault/error injection experiments with real-world failures, showing that our fault/error injections can recreate many real-world failure patterns. The paper aims to address the lack of studies on systematic analyses of Kubernetes failures to date. Our results show that even a single fault/error (e.g., a bit-flip) in the data stored can propagate, causing cluster-wide failures (3% of injections), service networking issues (4%), and service under/over provisioning (24%). Errors in the fields tracking dependencies between object caused 51% of such cluster-wide failures. We argue that controlled fault/error injection-based testing should be employed to proactively assess Kubernetes' resiliency and guide the design of failure mitigation strategies.more » « less
-
We present 3MileBeach, a tracing and fault injection platform designed for microservice-based architectures. 3Mile-Beach interposes on the message serialization libraries that are ubiquitous in this environment, avoiding the application code instrumentation that tracing and fault injection infrastructures typically require. 3MileBeach provides message-level distributed tracing at less than 50% of the overhead of the state-of-the-art tracing frameworks, and fault injection that allows higher precision experiments than existing solutions. We measure the overhead of 3MileBeach as a tracer and its efficacy as a fault injector. We qualitatively measure its promise as a platform for tuning and debugging by sharing concrete use cases in the context of bottleneck identification, performance tuning, and bug finding. Finally, we use 3MileBeach to perform a novel type of fault injection - Temporal Fault Injection (TFI), which more precisely controls individual inter-service message flow with temporal prerequisites, and makes it possible to catch an entirely new class of fault tolerance bugs.more » « less