This paper introduces a new parallel clustering algorithm, named Feel-the-Way clustering algorithm, that provides better or equivalent convergence rate than the traditional clustering methods by optimizing the synchronization and communication costs. Our algorithm design centers on how to optimize three factors simultaneously: reduced synchronizations, improved convergence rate, and retained same or comparable optimization cost. To compare the optimization cost, we use the Sum of Square Error (SSE) cost as the metric, which is the sum of the square distance between each data point and its assigned clusters. Compared with the traditional MPI k-means algorithm, the new Feel-the-Way algorithm requires less communications among participating processes. As for the convergence rate, the new algorithm requires fewer number of iterations to converge. As for the optimization cost, it obtains the SSE costs that are close to the k-means algorithm. In the paper, we first design the full-step Feel-the-Way k-means clustering algorithm that can significantly reduce the number of iterations that are required by the original k-means clustering method. Next, we improve the performance of the full-step algorithm by adopting an optimized sampling-based approach, named reassignment-history-aware sampling. Our experimental results show that the optimized sampling-based Feel-the-Way method is significantly faster than the widely used k-means clustering method, and can provide comparable optimization costs. More extensive experiments with several synthetic datasets and real-world datasets (e.g., MNIST, CIFAR-10, ENRON, and PLACES-2) show that the new parallel algorithm can outperform the open source MPI k-means library by up to 110% on a high-performance computing system using 4,096 CPU cores. In addition, the new algorithm can take up to 51% fewer iterations to converge than the k-means clustering algorithm.
more » « less- PAR ID:
- 10546704
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- The International Journal of High Performance Computing Applications
- Volume:
- 35
- Issue:
- 2
- ISSN:
- 1094-3420
- Format(s):
- Medium: X Size: p. 154-169
- Size(s):
- p. 154-169
- Sponsoring Org:
- National Science Foundation
More Like this
-
We provide a new bi-criteria O(log2k) competitive algorithm for explainable k-means clustering. Explainable k-means was recently introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). It is described by an easy to interpret and understand (threshold) decision tree or diagram. The cost of the explainable k-means clustering equals to the sum of costs of its clusters; and the cost of each cluster equals the sum of squared distances from the points in the cluster to the center of that cluster. The best non bi-criteria algorithm for explainable clustering O(k) competitive, and this bound is tight. Our randomized bi-criteria algorithm constructs a threshold decision tree that partitions the data set into (1+δ)k clusters (where δ∈(0,1) is a parameter of the algorithm). The cost of this clustering is at most O(1/δ⋅log2k) times the cost of the optimal unconstrained k-means clustering. We show that this bound is almost optimal.more » « less
-
null (Ed.)State-of-the-art seismic imaging techniques treat inversion tasks such as full-waveform inversion (FWI) and least-squares reverse time migration (LSRTM) as partial differential equation-constrained optimization problems. Due to the large-scale nature, gradient-based optimization algorithms are preferred in practice to update the model iteratively. Higher-order methods converge in fewer iterations but often require higher computational costs, more line-search steps, and bigger memory storage. A balance among these aspects has to be considered. We have conducted an evaluation using Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate the steepest-descent algorithm, which we innovatively treat as a fixed-point iteration. Independent of the unknown parameter dimensionality, the computational cost of implementing the method can be reduced to an extremely low dimensional least-squares problem. The cost can be further reduced by a low-rank update. We determine the theoretical connections and the differences between AA and other well-known optimization methods such as L-BFGS and the restarted generalized minimal residual method and compare their computational cost and memory requirements. Numerical examples of FWI and LSRTM applied to the Marmousi benchmark demonstrate the acceleration effects of AA. Compared with the steepest-descent method, AA can achieve faster convergence and can provide competitive results with some quasi-Newton methods, making it an attractive optimization strategy for seismic inversion.more » « less
-
We analyze online (Bottou & Bengio, 1994) and mini-batch (Sculley, 2010) k-means variants. Both scale up the widely used Lloyd’s algorithm via stochastic approximation, and have become popular for large-scale clustering and unsupervised feature learning. We show, for the first time, that they have global convergence towards “local optima” at rate O(1/t) under general conditions. In addition, we show that if the dataset is clusterable, stochastic k-means with suitable initialization converges to an optimal k-means solution at rate O(1/t) with high probability. The k-means objective is non-convex and non-differentiable; we exploit ideas from non-convex gradient-based optimization by providing a novel characterization of the trajectory of the k-means algorithm on its solution space, and circumvent its non-differentiability via geometric insights about the k-means update.more » « less
-
In this paper, we study k-means++ and k-means++ parallel, the two most popular algorithms for the classic k-means clustering problem. We provide novel analyses and show improved approximation and bi-criteria approximation guarantees for k-means++ and k-means++ parallel. Our results give a better theoretical justification for why these algorithms perform extremely well in practice. We also propose a new variant of k-means++ parallel algorithm (Exponential Race k-means++) that has the same approximation guarantees as k-means++.more » « less
-
We prove asymptotic convergence for a general class of k-means algorithms performed over streaming data from a distribution— the centers asymptotically converge to the set of stationary points of the k-means objective function. To do so, we show that online k-means over a distribution can be interpreted as stochastic gradient descent with a stochastic learning rate schedule. Then, we prove convergence by extending techniques used in optimization literature to handle settings where center-specific learning rates may depend on the past trajectory of the centers.more » « less