skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Information Is Where You Find It: Perception as an Ecologically Well-Posed Problem
Texts on visual perception typically begin with the following premise: Vision is an ill-posed problem, and perception is underdetermined by the available information. If this were really the case, however, it is hard to see how vision could ever get off the ground. James Gibson’s signal contribution was his hypothesis that for every perceivable property of the environment, however subtle, there must be a higher order variable of information, however complex, that specifies it—if only we are clever enough to find them. Such variables are informative about behaviorally relevant properties within the physical and ecological constraints of a species’ niche. Sensory ecology is replete with instructive examples, including weakly electric fish, the narwal’s tusk, and insect flight control. In particular, I elaborate the case of passing through gaps. Optic flow is sufficient to control locomotion around obstacles and through openings. The affordances of the environment, such as gap passability, are specified by action-scaled information. Logically ill-posed problems may thus, on closer inspection, be ecologically well-posed.  more » « less
Award ID(s):
1849446
PAR ID:
10546838
Author(s) / Creator(s):
 
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
i-Perception
Volume:
12
Issue:
2
ISSN:
2041-6695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vision-based formation control systems are attractive because they can use inexpensive sensors and can work in GPS-denied environments. The safety assurance for such systems is challenging: the vision component’s accuracy depends on the environment in complicated ways, these errors propagate through the system and lead to incorrect control actions, and there exists no formal specification for end-to-end reasoning. We address this problem and propose a technique for safety assurance of vision-based formation control: First, we propose a scheme for constructing quantizers that are consistent with vision-based perception. Next, we show how the convergence analysis of a standard quantized consensus algorithm can be adapted for the constructed quantizers. We use the recently defined notion of perception contracts to create error bounds on the actual vision-based perception pipeline using sampled data from different ground truth states, environments, and weather conditions. Specifically, we use a quantizer in logarithmic polar coordinates, and we show that this quantizer is suitable for the constructed perception contracts for the vision-based position estimation, where the error worsens with respect to the absolute distance between agents. We build our formation control algorithm with this nonuniform quantizer, and we prove its convergence employing an existing result for quantized consensus. 
    more » « less
  2. The perception of distance is a complex process that often involves sensory information beyond that of just vision. In this work, we investigated if depth perception based on auditory information can be calibrated, a process by which perceptual accuracy of depth judgments can be improved by providing feedback and then performing corrective actions. We further investigated if perceptual learning through carryover effects of calibration occurs in different levels of a virtual environment’s visibility based on different levels of virtual lighting. Users performed an auditory depth judgment task over several trials in which they walked where they perceived an aural sound to be, yielding absolute estimates of perceived distance. This task was performed in three sequential phases: pretest, calibration, posttest. Feedback on the perceptual accuracy of distance estimates was only provided in the calibration phase, allowing to study the calibration of auditory depth perception. We employed a 2 (Visibility of virtual environment) ×3 (Phase) ×5 (Target Distance) multi-factorial design, manipulating the phase and target distance as within-subjects factors, and the visibility of the virtual environment as a between-subjects factor. Our results revealed that users generally tend to underestimate aurally perceived distances in VR similar to the distance compression effects that commonly occur in visual distance perception in VR. We found that auditory depth estimates, obtained using an absolute measure, can be calibrated to become more accurate through feedback and corrective action. In terms of environment visibility, we find that environments visible enough to reveal their extent may contain visual information that users attune to in scaling aurally perceived depth. 
    more » « less
  3. Urban Air Mobility (UAM) applications, such as air taxis, will rely heavily on perception for situational awareness and safe operation. With recent advances in AI/ML, state-of-the-art perception systems can provide the high-fidelity information necessary for UAM systems. However, due to size, weight, power, and cost (SWaP-C) constraints, the available computing resources of the on-board computing platform in such UAM systems are limited. Therefore, real-time processing of sophisticated perception algorithms, along with guidance, navigation, and control (GNC) functions in a UAM system, is challenging and requires the careful allocation of computing resources. Furthermore, the optimal allocation of computing resources may change over time depending on the speed of the vehicle, environmental complexities, and other factors. For instance, a fast-moving air vehicle at low altitude would need a low-latency perception system, as a long delay in perception can negatively affect safety. Conversely, a slowly landing air vehicle in a complex urban environment would prefer a highly accurate perception system, even if it takes a little longer. However, most perception and control systems are not designed to support such dynamic reconfigurations necessary to maximize performance and safety. We advocate for developing “anytime” perception and control capabilities that can dynamically reconfigure the capabilities of perception and GNC algorithms at runtime to enable safe and intelligent UAM applications. The anytime approach will efficiently allocate the limited computing resources in ways that maximize mission success and ensure safety. The anytime capability is also valuable in the context of distributed sensing, enabling the efficient sharing of perception information across multiple sensor modalities between the nodes. 
    more » « less
  4. Abstract The reduction of a large‐scale symmetric linear discrete ill‐posed problem with multiple right‐hand sides to a smaller problem with a symmetric block tridiagonal matrix can easily be carried out by the application of a small number of steps of the symmetric block Lanczos method. We show that the subdiagonal blocks of the reduced problem converge to zero fairly rapidly with increasing block number. This quick convergence indicates that there is little advantage in expressing the solutions of discrete ill‐posed problems in terms of eigenvectors of the coefficient matrix when compared with using a basis of block Lanczos vectors, which are simpler and cheaper to compute. Similarly, for nonsymmetric linear discrete ill‐posed problems with multiple right‐hand sides, we show that the solution subspace defined by a few steps of the block Golub–Kahan bidiagonalization method usually can be applied instead of the solution subspace determined by the singular value decomposition of the coefficient matrix without significant, if any, reduction of the quality of the computed solution. 
    more » « less
  5. Usable x-ray vision has long been a goal in augmented reality research and development. X-ray vision, or the ability to view and understand information presented through an opaque barrier, would be imminently useful across a variety of domains. Unfortunately, however, the effect of x-ray vision on situation awareness, an operator's understanding of a task or environment, has not been significantly studied. This is an important question; if x-ray vision does not increase situation awareness, of what use is it? Thus, we have developed an x-ray vision system, in order to investigate situation awareness in the context of action space distances. 
    more » « less