We propose a novel belief space planning technique for continuous dynamics by viewing the belief system as a hybrid dynamical system with time-driven switching. Our approach is based on the perturbation theory of differential equations and extends sequential action control to stochastic dynamics. The resulting algorithm, which we name SACBP, does not require discretization of spaces or time and synthesizes control signals in near real-time. SACBP is an anytime algorithm that can handle general parametric Bayesian filters under certain assumptions. We demonstrate the effectiveness of our approach in an active sensing scenario and a model-based Bayesian reinforcement learning problem. In these challenging problems, we show that the algorithm significantly outperforms other existing solution techniques including approximate dynamic programming and local trajectory optimization.
more » « less- PAR ID:
- 10546886
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- The International Journal of Robotics Research
- Volume:
- 40
- Issue:
- 10-11
- ISSN:
- 0278-3649
- Format(s):
- Medium: X Size: p. 1167-1195
- Size(s):
- p. 1167-1195
- Sponsoring Org:
- National Science Foundation
More Like this
-
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. Moreover, we apply contemporary statistical estimation techniques to certify the system’s safety through persistent constraint satisfaction with high probability. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods.more » « less
-
Learning how to effectively control unknown dynamical systems from data is crucial for intelligent autonomous systems. This task becomes a significant challenge when the underlying dynamics are changing with time. Motivated by this challenge, this paper considers the problem of controlling an unknown Markov jump linear system (MJS) to optimize a quadratic objective in a data-driven way. By taking a model-based perspective, we consider identification-based adaptive control for MJS. We first provide a system identification algorithm for MJS to learn the dynamics in each mode as well as the Markov transition matrix, underlying the evolution of the mode switches, from a single trajectory of the system states, inputs, and modes. Through mixing-time arguments, sample complexity of this algorithm is shown to be O(1/T−−√). We then propose an adaptive control scheme that performs system identification together with certainty equivalent control to adapt the controllers in an episodic fashion. Combining our sample complexity results with recent perturbation results for certainty equivalent control, we prove that when the episode lengths are appropriately chosen, the proposed adaptive control scheme achieves O(T−−√) regret. Our proof strategy introduces innovations to handle Markovian jumps and a weaker notion of stability common in MJSs. Our analysis provides insights into system theoretic quantities that affect learning accuracy and control performance. Numerical simulations are presented to further reinforce these insights.more » « less
-
This paper introduces a strategy for satisfying basic control objectives for systems whose dynamics are almost entirely unknown. This setting is motivated by a scenario where a system undergoes a critical failure, thus significantly changing its dynamics. In such a case, retaining the ability to satisfy basic control objectives such as reach-avoid is imperative. To deal with significant restrictions on our knowledge of system dynamics, we develop a theory of myopic control. The primary goal of myopic control is to, at any given time, optimize the current direction of the system trajectory, given solely the limited information obtained about the system until that time. Building upon this notion, we propose a control algorithm which simultaneously uses small perturbations in the control effort to learn local system dynamics while moving in the direction which seems to be optimal based on previously obtained knowledge. We show that the algorithm results in a trajectory that is nearly optimal in the myopic sense, i.e., it is moving in a direction that seems to be nearly the best at the given time, and provide formal bounds for suboptimality. We demonstrate the usefulness of the proposed algorithm on a high-fidelity simulation of a damaged Boeing 747 seeking to remain in level flight.more » « less
-
null (Ed.)By modelling how the probability distributions of individuals’ states evolve as new information flows through a network, belief propagation has broad applicability ranging from image correction to virus propagation to even social networks. Yet, its scant implementations confine themselves largely to the realm of small Bayesian networks. Applications of the algorithm to graphs of large scale are thus unfortunately out of reach. To promote its broad acceptance, we enable belief propagation for both small and large scale graphs utilizing GPU processing. We therefore explore a host of optimizations including a new simple yet extensible input format enabling belief propagation to operate at massive scale, along with significant workload processing updates and meticulous memory management to enable our implementation to outperform prior works in terms of raw execution time and input size on a single machine. Utilizing a suite of parallelization technologies and techniques against a diverse set of graphs, we demonstrate that our implementations can efficiently process even massive networks, achieving up to nearly 121x speedups versus our control yet optimized single threaded implementations while supporting graphs of over ten million nodes in size in contrast to previous works’ support for thousands of nodes using CPU-based multi-core and host solutions. To assist in choosing the optimal implementation for a given graph, we provide a promising method utilizing a random forest classifier and graph metadata with a nearly 95% F1-score from our initial benchmarking and is portable to different GPU architectures to achieve over an F1-score of over 72% accuracy and a speedup of nearly 183x versus our control running in this new environment.more » « less
-
N. Matni, M. Morari (Ed.)This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers. Given a neural network, we use an existing verification algorithm to construct inclusion functions for its input-output behavior. Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system. This embedding provides a scalable approach for safety analysis of the neural control loop while preserving the nonlinear structure of the system. We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system. We design an algorithm to leverage this computational advantage through partitioning strategies, improving our reachable set estimates while balancing its runtime with tunable parameters. We demonstrate the performance of this algorithm through two case studies. First, we demonstrate this method’s strength in complex nonlinear environments. Then, we show that our approach matches the performance of the state-of-the art verification algorithm for linear discretized systems.more » « less