In this paper, we set to examine the inter-laminar shear strength of a fiber-reinforced composite part manufactured via a stepped-concurrent ultraviolet curing and layering process. This process was specifically proposed for making epoxy-based thick parts, whereby a layer-by-layer, model-based, optimal layering time and ultraviolet control scheme is set up with the objective of minimizing the degree of cure deviation across the final thick part. We focus on a cationic curing process wherein additional energy savings are possible by switching off the ultraviolet source after initiating the curing reaction with the ultraviolet source at each layer addition. Since the inter-laminar sheer strength of parts made via a layering process is often a concern, we consider the application of in-situ consolidation pressure in the layering process. We then characterize the inter-laminar shear strength by manufacturing samples with application of different in-situ consolidation pressures and measuring the inter-laminar shear strength of each sample by the short-beam shear test. The results showed that the inter-laminar shear strength of composite parts fabricated with the proposed stepped-concurrent curing, and layering process increases with the applied consolidation pressure up to a point. Scanning electron microscopy of samples cured at different in-situ consolidation pressure showed that the sample with optimum consolidation pressure has relatively uniform fiber to resin distribution and hence improved inter-laminar shear strength.
A low-cost, low-waste manufacturing method for advanced thermoset composite parts could improve market penetration of composites compared to other engineering materials such as aluminum or steel. Such a method could combine some of the new trends in composites manufacturing such as resin infusion (eliminates need for prepreg), out-of-autoclave consolidation, and snap curing. The feasibility of a hybrid process with these characteristics has been demonstrated by uniting liquid composite molding, resin curing by electron beam irradiation, and high pressure consolidation with specialized elastomeric tooling. To demonstrate feasibility, a mold set was designed to make flat, square four-ply woven carbon fiber parts by (1) vacuum-infusing dry preforms with an electron beam–curable epoxy resin in minutes, (2) applying 690 kPa of uniform pressure and consolidating in seconds using an elastomer-faced specialized elastomeric tooling tool and simple hydraulic press, and (3) curing in seconds using a 3 MeV electron beam source. To better understand how various process parameters affect part performance, parameters are varied in a simple design of experiments, and flexural strength and stiffness, thickness distribution, fiber and void volume fractions, surface roughness, and cross-sectional characteristics (via microscopy) are measured and compared.
more » « less- PAR ID:
- 10546981
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
- Volume:
- 233
- Issue:
- 4
- ISSN:
- 0954-4054
- Format(s):
- Medium: X Size: p. 1168-1181
- Size(s):
- p. 1168-1181
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Thermoset polymer composites, known for their outstanding thermal, mechanical, and chemical properties, have found applications in diverse fields, including aerospace and automotive industries. These polymers, once cured, cannot be recycled, making the end-of-life management of these composites very difficult and posing an environmental challenge. Conventional recycling methods are unsuitable for thermosets, forcing their accumulation in landfills and raising environmental concerns. One possible solution to overcome this concern is to use resins or curing agents, or both, made from biodegradable materials. This study explores the fabrication and characterization of polymer composites using a commercially available green curing agent made from biomass. The composite laminates were fabricated using HVARTM (Heated Vacuum Assisted Resin Transfer Molding) process. In this process, heat pads are used to increase the temperature of both the epoxy resin and the plain weave carbon fiber laminate to a desired temperature, providing ease of flow to the resin. Small coupons were cut from the laminate using a water jet machine to study the flexural behavior of the composite in accordance with ASTM testing standards and compared with composite coupons fabricated using conventional epoxy resin.more » « less
-
3D printing allows for moldless fabrication of continuous fiber composites with high design freedom and low manufacturing cost per part, which makes it particularly well-suited for rapid prototyping and composite product development. Compared to thermal-curable resins, UV-curable resins enable the 3D printing of composites with high fiber content and faster manufacturing speeds. However, the printed composites exhibit low mechanical strength and weak interfacial bonding for high-performance engineering applications. In addition, they are typically not reprocessable or repairable; if they could be, it would dramatically benefit the rapid prototyping of composite products with improved durability, reliability, cost savings, and streamlined workflow. In this study, we demonstrate that the recently emerged two-stage UV-curable resin is an ideal material candidate to tackle these grand challenges in 3D printing of thermoset composites with continuous carbon fiber. The resin consists primarily of acrylate monomers and crosslinkers with exchangeable covalent bonds. During the printing process, composite filaments containing up to 30.9% carbon fiber can be rapidly deposited and solidified through UV irradiation. After printing, the printed composites are subjected to post-heating. Their mechanical stiffness, strength, and inter-filament bonding are significantly enhanced due to the bond exchange reactions within the thermoset matrix. Furthermore, the utilization of the two-stage curable resin enables the repair, reshaping, and recycling of 3D printed thermosetting composites. This study represents the first detailed study to explore the benefits of using two-stage UV curable resins for composite printing. The fundamental understanding could potentially be extended to other types of two-stage curable resins with different molecular mechanisms.more » « less
-
Abstract Natural fibers are lightweight, cost‐effective, readily available, and eco‐friendly materials. However, natural fiber‐reinforced composites are constrained by biological inconsistency and inferior fiber‐matrix interfacial properties, which restrict effective processing using advanced additive manufacturing methods. In this study, we develop a novel concept for natural fiber composite interfaces by growing hydroxyapatite (HAP) nanocrystals on jute fibers. The resulting hybrid composite is characterized using mechanical testing, nanoindentation, and modulus mapping. The interfacial region suggests a 31.4% increase in stiffness and possesses a storage modulus of up to 7.5 GPa. The tensile modulus and strength of the hybrid composite improves by 30% and 33%, respectively. Furthermore, we develop a novel process for the additive manufacturing of jute fiber thermoset composites through a direct writing (DW) process. The HAP modification increases thermal conductivity, consequently improving the curing process during DW and enhancing composite manufacturability. We demonstrate that the DW process enables the printing of intricate multilayer geometries with varying fiber content.
Highlights Hydroxyapatite is used for natural fiber composite interfacial modification.
Nanoindentation shows the interfacial region exhibits 31.4% higher stiffness.
Modified composites possess superior mechanical performance.
Jute fibers are thermally functionalized for composite additive manufacturing.
A direct writing method is developed for continuous functionalized jute fiber.
-
The viscoelastic properties of carbon fiber reinforced thermoset composites are of utmost importance during processing such materials using composite forming. The quality of the manufactured parts is largely dependent on intelligent process parameter selection based on the viscoelastic and flow properties of the polymer resin. Viscoelastic properties such as the complex viscosity (η*), storage modulus (G'), loss modulus (G''), and loss tangent (tanδ) are used to determine the critical transition events (such as gelation) during curing. An understanding of the changes in viscoelastic properties as a function of processing temperature and degree of cure provides insight to establish a suitable processing range for compression forming of prepreg systems. However, tracking viscoelastic properties as a function of cure during the forming process is a challenging task. In this current work, we have investigated the effect of sample size and adhesive type on the rheological properties of a commercially available carbon fiber prepreg material. Specifically, determining the linear viscoelastic region (LVE) as a function of sample configuration and different adhesive chemistries were explored. The results suggest that the square-shaped sample geometries coupled with cyanoacrylate based adhesive are optimum for conducting rheological characterization on the carbon fiber prepreg system.more » « less