We present a continuous high-resolution precisely dated multiproxy record of hydroclimate variability at Anjohibe cave in northwestern Madagascar using speleothem AB13. The record spans from ~4484 y BP to ~2863 y BP. Stalagmite δ18O, δ13C and Sr/Ca ratios show very similar changes in hydroclimate. The mechanism controlling Sr/Ca changes, however, from prior calcite precipitation to degree of dolomite dissolution at about 4 ky BP. Our record is also in good agreement with previously published speleothem records from the same area. This agreement and multiproxy consensus indicate that AB13 provides a robust record of hydroclimate variability, including a continuous record of hydroclimate variability across the 4.2 ka event. This 4.2 ka event in Madagascar is marked by two distinct periods of drying between ~3900 y BP to 4300 y BP. A dry 4.2 ka event at this Southern Hemisphere site helps limit possible mechanisms for the event, indicating that a meridional shift to the south in the ITCZ is not responsible for the 4.2 ka event. In addition, the 4.2 ka event does not stand out as a unique dry period in our record. The longest and driest period of the record lasted ~300 years with peak dryness at ~3000 y BP. Our record differs significantly from a speleothem record from Rodrigues Island, located ~1800 km to the east of our study area in Madagascar suggesting different climatological controls on northwest Madagascar and more oceanic sites to the east.
more »
« less
Hydroclimate variability from western Iberia (Portugal) during the Holocene: Insights from a composite stalagmite isotope record
Iberia is predicted under future warming scenarios to be increasingly impacted by drought. While it is known that this region has experienced multiple intervals of enhanced aridity over the Holocene, additional hydroclimate-sensitive records from Iberia are necessary to place current and future drying into a broader perspective. Toward that end, we present a multi-proxy composite record from six well-dated and overlapping speleothems from Buraca Gloriosa (BG) cave, located in western Portugal. The coherence between the six stalagmites in this composite stalagmite record illustrates that climate (not in-cave processes) impacts speleothem isotopic values. This record provides the first high-resolution, precisely dated, terrestrial record of Holocene hydroclimate from west-central Iberia. The BG record reveals that aridity in western Portugal increased secularly from 9.0 ka BP to present, as evidenced by rising values of both carbon (δ13C) and oxygen (δ18O) stable isotope values. This trend tracks the decrease in Northern Hemisphere summer insolation and parallels Iberian margin sea surface temperatures (SST). The increased aridity over the Holocene is consistent with changes in Hadley Circulation and a southward migration of the Intertropical Convergence Zone (ITCZ). Centennial-scale shifts in hydroclimate are coincident with changes in total solar irradiance (TSI) after 4 ka BP. Several major drying events are evident, the most prominent of which was centered around 4.2 ka BP, a feature also noted in other Iberian climate records and coinciding with well-documented regional cultural shifts. Substantially, wetter conditions occurred from 0.8 ka BP to 0.15 ka BP, including much of the ‘Little Ice Age’. This was followed by increasing aridity toward present day. This composite stalagmite proxy record complements oceanic records from coastal Iberia, lacustrine records from inland Iberia, and speleothem records from both northern and southern Spain and depicts the spatial and temporal variability in hydroclimate in Iberia.
more »
« less
- PAR ID:
- 10546999
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- The Holocene
- Volume:
- 30
- Issue:
- 7
- ISSN:
- 0959-6836
- Format(s):
- Medium: X Size: p. 966-981
- Size(s):
- p. 966-981
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Close coupling of Iberian hydroclimate and North Atlantic seasurface temperature (SST) during recent glacial periods has been identifiedthrough the analysis of marine sediment and pollen grains co-deposited on thePortuguese continental margin. While offering precisely correlatable records,these time series have lacked a directly dated, site-specific record ofcontinental Iberian climate spanning multiple glacial cycles as a point ofcomparison. Here we present a high-resolution, multi-proxy (growth dynamicsandδ13C, δ18O, and δ234Uvalues) composite stalagmite record of hydroclimate from two caves in westernPortugal across the majority of the last two glacial cycles (∼220ka).At orbital and millennial scales, stalagmite-based proxies for hydroclimateproxies covaried with SST, with elevated δ13C,δ18O, and δ234U values and/or growth hiatusesindicating reduced effective moisture coincident with periods of lowered SSTduring major ice-rafted debris events, in agreement with changes inpalynological reconstructions of continental climate. While in many cases thePortuguese stalagmite record can be scaled to SST, in some intervals themagnitudes of stalagmite isotopic shifts, and possibly hydroclimate, appearto have been somewhat decoupled from SST.more » « less
-
The Azores High (AH), a subtropical ridge in the atmosphere over the North Atlantic comprising one node of the North Atlantic Oscillation (NAO) system, has a dominant influence on the weather and climate of the Iberian Peninsula and northwest Africa. The behavior of the entire NAO system over the last millennium has been the subject of much debate in both proxy- and model-based studies. Many studies have focused on the behavior of the entire NAO system, but we focus solely on the behavior of the AH due to its proximity to this region. Other proxies from this region, mainly from Spain and Morocco, have provided details about atmospheric dynamics yet spatiotemporal gaps remain. In this study, we present a continuous, sub-decadally-resolved composite stalagmite carbon isotopic record from three partially overlapping stalagmites from Buraca Gloriosa (BG) cave, western Portugal, situated within the center of the AH, that preserves evidence of regional hydroclimate variability from approximately 800 CE to the present. This composite record, developed from U-Th dating and laminae counting paired with carbon isotopes, primarily reflects effective moisture in western Portugal. Given the close pairing of AH behavior (intensity, size, and location) and moisture transport in this region, the BG composite record allows for a thorough analysis of AH behavior over time. Multidecadal to centennial scale variability in the BG record and state-of-the-art last millennium climate model simulations show considerable coherence with precipitation-sensitive records from Spain and Morocco that, like BG, are strongly influenced by the intensity, size, and location of the AH. Synthesis of model output and proxy data suggests that western Portugal was persistently dry during much of the Medieval Climate Anomaly (MCA; ~850-1250 CE) and Modern era (1850 CE-present) and experienced wetter conditions during Little Ice Age (LIA; ~1400-1850 CE). Even considering age uncertainties from the Iberian Peninsula and northwest Africa proxy records, the apparent timing in the transition from a relatively dry MCA to a wetter LIA is spatially variable across this region, likely due to the non-stationary behavior of the AH system.more » « less
-
The Azores High (AH), a subtropical ridge in the atmosphere over the North Atlantic comprising one node of the North Atlantic Oscillation (NAO) system, has a dominant influence on the weather and climate of the Iberian Peninsula and northwest Africa. The behavior of the entire NAO system over the last millennium has been the subject of much debate in both proxy- and model-based studies. Many studies have focused on the behavior of the entire NAO system, but we focus solely on the behavior of the AH due to its proximity to this region. Other proxies from this region, mainly from Spain and Morocco, have provided details about atmospheric dynamics yet spatiotemporal gaps remain. In this study, we present a continuous, sub-decadally-resolved composite stalagmite carbon isotopic record from three partially overlapping stalagmites from Buraca Gloriosa (BG) cave, western Portugal, situated within the center of the AH, that preserves evidence of regional hydroclimate variability from approximately 800 CE to the present. This composite record, developed from U-Th dating and laminae counting paired with carbon isotopes, primarily reflects effective moisture in western Portugal. Given the close pairing of AH behavior (intensity, size, and location) and moisture transport in this region, the BG composite record allows for a thorough analysis of AH behavior over time. Multidecadal to centennial scale variability in the BG record and state-of-the-art last millennium climate model simulations show considerable coherence with precipitation-sensitive records from Spain and Morocco that, like BG, are strongly influenced by the intensity, size, and location of the AH. Synthesis of model output and proxy data suggests that western Portugal was persistently dry during much of the Medieval Climate Anomaly (MCA; ~850-1250 CE) and Modern era (1850 CE-present) and experienced wetter conditions during Little Ice Age (LIA; ~1400-1850 CE). Even considering age uncertainties from the Iberian Peninsula and northwest Africa proxy records, the apparent timing in the transition from a relatively dry MCA to a wetter LIA is spatially variable across this region, likely due to the non-stationary behavior of the AH system.more » « less
-
Abstract The 8.2 ka event is the most significant global climate anomaly of the Holocene epoch, but a lack of records from Mainland Southeast Asia (MSEA) currently limits our understanding of the spatial and temporal extent of the climate response. A newly developed speleothem record from Tham Doun Mai Cave, Northern Laos provides the first high‐resolution record of this event in MSEA. Our multiproxy record (δ18O, δ13C, Mg/Ca, Sr/Ca, and petrographic data), anchored in time by 9 U‐Th ages, reveals a significant reduction in local rainfall amount and weakening of the monsoon at the event onset at ∼8.29 ± 0.03 ka BP. This response lasts for a minimum of ∼170 years, similar to event length estimates from other speleothem δ18O monsoon records. Interestingly, however, our δ13C and Mg/Ca data, proxies for local hydrology, show that abrupt changes to local rainfall amounts began decades earlier (∼70 years) than registered in the δ18O. Moreover, the δ13C and Mg/Ca also show that reductions in rainfall continued for at least ∼200 years longer than the weakening of the monsoon inferred from the δ18O. Our interpretations suggest that drier conditions brought on by the 8.2 ka event in MSEA were felt beyond the temporal boundaries defined by δ18O‐inferred monsoon intensity, and an initial wet period (or precursor event) may have preceded the local drying. Most existing Asian Monsoon proxy records of the 8.2 ka event may lack the resolution and/or multiproxy information necessary to establish local and regional hydrological sensitivity to abrupt climate change.more » « less