skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Task-based hybrid shared control for training through forceful interaction

Despite the fact that robotic platforms can provide both consistent practice and objective assessments of users over the course of their training, there are relatively few instances where physical human–robot interaction has been significantly more effective than unassisted practice or human-mediated training. This article describes a hybrid shared control robot, which enhances task learning through kinesthetic feedback. The assistance assesses user actions using a task-specific evaluation criterion and selectively accepts or rejects them at each time instant. Through two human subject studies (total [Formula: see text]), we show that this hybrid approach of switching between full transparency and full rejection of user inputs leads to increased skill acquisition and short-term retention compared with unassisted practice. Moreover, we show that the shared control paradigm exhibits features previously shown to promote successful training. It avoids user passivity by only rejecting user actions and allowing failure at the task. It improves performance during assistance, providing meaningful task-specific feedback. It is sensitive to initial skill of the user and behaves as an “assist-as-needed” control scheme, adapting its engagement in real time based on the performance and needs of the user. Unlike other successful algorithms, it does not require explicit modulation of the level of impedance or error amplification during training and it is permissive to a range of strategies because of its evaluation criterion. We demonstrate that the proposed hybrid shared control paradigm with a task-based minimal intervention criterion significantly enhances task-specific training.

 
more » « less
Award ID(s):
1637764
PAR ID:
10547108
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
The International Journal of Robotics Research
Volume:
39
Issue:
9
ISSN:
0278-3649
Format(s):
Medium: X Size: p. 1138-1154
Size(s):
p. 1138-1154
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel criterion for evaluating user input for human-robot interfaces for known tasks. We use the mode insertion gradient (MIG)—a tool from hybrid control theory—as a filtering criterion that instantaneously assesses the impact of user actions on a dynamic system over a time window into the future. As a result, the filter is permissive to many chosen strategies, minimally engaging, and skill-sensitive—qualities desired when evaluating human actions. Through a human study with 28 healthy volunteers, we show that the criterion exhibits a low, but significant, negative correlation between skill level, as estimated from task-specific measures in unassisted trials, and the rate of controller intervention during assistance. Moreover, a MIG-based filter can be utilized to create a shared control scheme for training or assistance. In the human study, we observe a substantial training effect when using a MIG-based filter to perform cart-pendulum inversion, particularly when comparing improvement via the RMS error measure. Using simulation of a controlled spring-loaded inverted pendulum (SLIP) as a test case, we observe that the MIG criterion could be used for assistance to guarantee either task completion or safety of a joint human-robot system, while maintaining the system’s flexibility with respect to user-chosen strategies. 
    more » « less
  2. This paper proposes a novel stochastic-skill-level-based shared control framework to assist human novices to emulate human experts in complex dynamic control tasks. The proposed framework aims to infer stochastic-skill-levels (SSLs) of the human novices and provide personalized assistance based on the inferred SSLs. SSL can be assessed as a stochastic variable which denotes the probability that the novice will behave similarly to experts. We propose a data-driven method which can characterize novice demonstrations as a novice model and expert demonstrations as an expert model, respectively. Then, our SSL inference approach utilizes the novice and expert models to assess the SSL of the novices in complex dynamic control tasks. The shared control scheme is designed to dynamically adjust the level of assistance based on the inferred SSL to prevent frustration or tedium during human training due to poorly imposed assistance. The proposed framework is demonstrated by a human subject experiment in a human training scenario for a remotely piloted urban air mobility (UAM) vehicle. The results show that the proposed framework can assess the SSL and tailor the assistance for an individual in real-time. The proposed framework is compared to practice-only training (no assistance) and a baseline shared control approach to test the human learning rates in the designed training scenario with human subjects. A subjective survey is also examined to monitor the user experience of the proposed framework. 
    more » « less
  3. In an efficient and flexible human-robot collaborative work environment, a robot team member must be able to recognize both explicit requests and implied actions from human users. Identifying “what to do” in such cases requires an agent to have the ability to construct associations between objects, their actions, and the effect of actions on the environment. In this regard, semantic memory is being introduced to understand the explicit cues and their relationships with available objects and required skills to make “tea” and “sandwich”. We have extended our previous hierarchical robot control architecture to add the capability to execute the most appropriate task based on both feedback from the user and the environmental context. To validate this system, two types of skills were implemented in the hierarchical task tree: 1) Tea making skills and 2) Sandwich making skills. During the conversation between the robot and the human, the robot was able to determine the hidden context using ontology and began to act accordingly. For instance, if the person says “I am thirsty” or “It is cold outside” the robot will start to perform the tea-making skill. In contrast, if the person says, “I am hungry” or “I need something to eat”, the robot will make the sandwich. A humanoid robot Baxter was used for this experiment. We tested three scenarios with objects at different positions on the table for each skill. We observed that in all cases, the robot used only objects that were relevant to the skill. 
    more » « less
  4. During a natural disaster such as hurricane, earth- quake, or fire, robots have the potential to explore vast areas and provide valuable aid in search & rescue efforts. These scenar- ios are often high-pressure and time-critical with dynamically- changing task goals. One limitation to these large scale deploy- ments is effective human-robot interaction. Prior work shows that collaboration between one human and one robot benefits from shared control. Here we evaluate the efficacy of shared control for human-swarm teaming in an immersive virtual reality environment. Although there are many human-swarm interaction paradigms, few are evaluated in high-pressure settings representative of their intended end use. We have developed an open-source virtual reality testbed for realistic evaluation of human-swarm teaming performance under pressure. We conduct a user study (n=16) comparing four human-swarm paradigms to a baseline condition with no robotic assistance. Shared control significantly reduces the number of instructions needed to operate the robots. While shared control leads to marginally improved team performance in experienced participants, novices perform best when the robots are fully autonomous. Our experimental results suggest that in immersive, high-pressure settings, the benefits of robotic assistance may depend on how the human and robots interact and the human operator’s expertise. 
    more » « less
  5. With the proliferation of AI, there is a growing concern regarding individuals becoming overly reliant on AI, leading to a decrease in intrinsic skills and autonomy. Assistive AI frameworks, on the other hand, also have the potential to improve human learning and performance by providing personalized learning experiences and real-time feedback. To study these opposing viewpoints on the consequences of AI assistance, we conducted a behavioral experiment using a dynamic decision-making game to assess how AI assistance impacts user performance, skill transfer, and cognitive engagement in task execution. Participants were assigned to one of four conditions that featured AI assistance at different time-points during the task. Our results suggest that AI assistance can improve immediate task performance without inducing human skill degradation or carryover effects in human learning. This observation has important implications for AI assistive frameworks as it suggests that there are classes of tasks in which assistance can be provided without risking the autonomy of the user. We discuss the possible reasons for this set of effects and explore their implications for future research directives. 
    more » « less