Abstract The self-organization of strongly interacting electrons into superlattice structures underlies the properties of many quantum materials. How these electrons arrange within the superlattice dictates what symmetries are broken and what ground states are stabilized. Here we show that cryogenic scanning transmission electron microscopy (cryo-STEM) enables direct mapping of local symmetries and order at the intra-unit-cell level in the model charge-ordered system Nd1/2Sr1/2MnO3. In addition to imaging the prototypical site-centered charge order, we discover the nanoscale coexistence of an exotic intermediate state which mixes site and bond order and breaks inversion symmetry. We further show that nonlinear coupling of distinct lattice modes controls the selection between competing ground states. The results demonstrate the importance of lattice coupling for understanding and manipulating the character of electronic self-organization and that cryo-STEM can reveal local order in strongly correlated systems at the atomic scale.
more »
« less
Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet
Abstract Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5−δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.
more »
« less
- Award ID(s):
- 2100741
- PAR ID:
- 10547238
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- nature communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The primary mechanism of optical memoristive devices relies on phase transitions between amorphous and crystalline states. The slow or energy‐hungry amorphous–crystalline transitions in optical phase‐change materials are detrimental to the scalability and performance of devices. Leveraging an integrated photonic platform, nonvolatile and reversible switching between two layered structures of indium selenide (In2Se3) triggered by a single nanosecond pulse is demonstrated. The high‐resolution pair distribution function reveals the detailed atomistic transition pathways between the layered structures. With interlayer “shear glide” and isosymmetric phase transition, switching between the α‐ and β‐structural states contains low re‐configurational entropy, allowing reversible switching between layered structures. Broadband refractive index contrast, optical transparency, and volumetric effect in the crystalline–crystalline phase transition are experimentally characterized in molecular‐beam‐epitaxy‐grown thin films and compared to ab initio calculations. The nonlinear resonator transmission spectra measure of incremental linear loss rate of 3.3 GHz, introduced by a 1.5 µm‐long In2Se3‐covered layer, resulted from the combinations of material absorption and scattering.more » « less
-
Abstract The surface magnetization of Fe3GeTe2was examined by low-energy electron microscopy (LEEM) using an off-normal incidence electron beam. We found that the 180° domain walls are of Bloch type. Temperature-dependent LEEM measurements yield a surface magnetization with a surface critical exponentβ1 = 0.79 ± 0.02. This result is consistent with surface magnetism in the 3D semi-infinite Heisenberg (β1 = 0.84 ± 0.01) or Ising (β1 = 0.78 ± 0.02) models, which is distinctly different from the bulk exponent (β= 0.34 ± 0.07). The measurements reveal the power of LEEM with a tilted beam to determine magnetic domain structure in quantum materials without the need for the use of spin-polarized electrons. Single crystal diffraction measurements reveal inversion symmetry-breaking weak peaks and yield space group P-6m2. This Fe site defect-derived loss of inversion symmetry enables the formation of skyrmions in this Fe3GeTe2crystal.more » « less
-
Generalized symmetries often appear in the form of emergent symmetries in low energy effective descriptions of quantum many-body systems. Non-invertible symmetries are a particularly exotic class of generalized symmetries, in that they are implemented by transformations that do not form a group. Such symmetries appear generically in gapless states of quantum matter constraining the low-energy dynamics. To provide a UV-complete description of such symmetries, it is useful to construct lattice models that respect these symmetries exactly. In this paper, we discuss two families of one-dimensional lattice Hamiltonians with finite on-site Hilbert spaces: one with (invertible) $$S^{\,}_3$$ symmetry and the other with non-invertible $$\mathsf{Rep}(S^{\,}_3)$$ symmetry. Our models are largely analytically tractable and demonstrate all possible spontaneous symmetry breaking patterns of these symmetries. Moreover, we use numerical techniques to study the nature of continuous phase transitions between the different symmetry-breaking gapped phases associated with both symmetries. Both models have self-dual lines, where the models are enriched by (intrinsic) non-invertible symmetries generated by Kramers-Wannier-like duality transformations. We provide explicit lattice operators that generate these non-invertible self-duality symmetries. We show that the enhanced symmetry at the self-dual lines is described by a 2+1D symmetry-topological-order (SymTO) of type $$\overline{\mathrm{JK}}^{\,}_4\times \mathrm{JK}^{\,}_4$$. The condensable algebras of the SymTO determine the allowed gapped and gapless states of the self-dual $$S^{\,}_3$$-symetric and $$\mathsf{Rep}(S^{\,}_3)$$-symmetric models.more » « less
-
We explore exact generalized symmetries in the standard 2+1d lattice\mathbb{Z}_2 gauge theory coupled to the Ising model, and compare them with their continuum field theory counterparts. One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases. The non-invertible algebra involves a lattice condensation operator, which creates a toric code ground state from a product state. Another model has a mixed anomaly between a 1-form symmetry and an ordinary symmetry. This anomaly enforces a nontrivial transition in the phase diagram, consistent with the “Higgs=SPT” proposal. Finally, we discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation.more » « less
An official website of the United States government

