skip to main content


Title: Approximation Algorithms for Hop Constrained and Buy-At-Bulk Network Design via Hop Constrained Oblivious Routing
We consider two-cost network design models in which edges of the input graph have an associated cost and length. We build upon recent advances in hop-constrained oblivious routing to obtain two sets of results. We address multicommodity buy-at-bulk network design in the nonuniform setting. Existing poly-logarithmic approximations are based on the junction tree approach [Chekuri et al., 2010; Guy Kortsarz and Zeev Nutov, 2011]. We obtain a new polylogarithmic approximation via a natural LP relaxation. This establishes an upper bound on its integrality gap and affirmatively answers an open question raised in [Chekuri et al., 2010]. The rounding is based on recent results in hop-constrained oblivious routing [Ghaffari et al., 2021], and this technique yields a polylogarithmic approximation in more general settings such as set connectivity. Our algorithm for buy-at-bulk network design is based on an LP-based reduction to h-hop constrained network design for which we obtain LP-based bicriteria approximation algorithms. We also consider a fault-tolerant version of h-hop constrained network design where one wants to design a low-cost network to guarantee short paths between a given set of source-sink pairs even when k-1 edges can fail. This model has been considered in network design [Luis Gouveia and Markus Leitner, 2017; Gouveia et al., 2018; Arslan et al., 2020] but no approximation algorithms were known. We obtain polylogarithmic bicriteria approximation algorithms for the single-source setting for any fixed k. We build upon the single-source algorithm and the junction-tree approach to obtain an approximation algorithm for the multicommodity setting when at most one edge can fail.  more » « less
Award ID(s):
1910149
PAR ID:
10547245
Author(s) / Creator(s):
;
Editor(s):
Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
308
ISSN:
1868-8969
ISBN:
978-3-95977-338-6
Page Range / eLocation ID:
308-308
Subject(s) / Keyword(s):
Buy-at-bulk Hop-constrained network design LP integrality gap Fault-tolerant network design Theory of computation → Discrete optimization Theory of computation → Routing and network design problems
Format(s):
Medium: X Size: 21 pages; 792084 bytes Other: application/pdf
Size(s):
21 pages 792084 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Network design problems aim to compute low-cost structures such as routes, trees and subgraphs. Often, it is natural and desirable to require that these structures have small hop length or hop diameter. Unfortunately, optimization problems with hop constraints are much harder and less well understood than their hop-unconstrained counterparts. A significant algorithmic barrier in this setting is the fact that hop-constrained distances in graphs are very far from being a metric. We show that, nonetheless, hop-constrained distances can be approximated by distributions over ``partial tree metrics.'' We build this result into a powerful and versatile algorithmic tool which, similarly to classic probabilistic tree embeddings, reduces hop-constrained problems in general graphs to hop-unconstrained problems on trees. We then use this tool to give the first poly-logarithmic bicriteria approximations for the hop-constrained variants of many classic network design problems. These include Steiner forest, group Steiner tree, group Steiner forest, buy-at-bulk network design as well as online and oblivious versions of many of these problems. 
    more » « less
  2. null (Ed.)
    We prove the existence of an oblivious routing scheme that is poly(logn)-competitive in terms of (congestion + dilation), thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set of packets each with its own source and destination. The objective is to choose a path for each packet, from its source to its destination, so as to minimize (congestion + dilation), defined as follows: The dilation is the maximum path hop-length, and the congestion is the maximum number of paths that include any single edge. The routing scheme obliviously and randomly selects a path for each packet independent of (the existence of) the other packets. Despite this obliviousness, the selected paths have (congestion + dilation) within a poly(logn) factor of the best possible value. More precisely, for any integer hop-bound h, this oblivious routing scheme selects paths of length at most h · poly(logn) and is poly(logn)-competitive in terms of congestion in comparison to the best possible congestion achievable via paths of length at most h hops. These paths can be sampled in polynomial time. This result can be viewed as an analogue of the celebrated oblivious routing results of R'acke [FOCS 2002, STOC 2008], which are O(logn)-competitive in terms of congestion, but are not competitive in terms of dilation. 
    more » « less
  3. Kumar, Amit ; Ron-Zewi, Noga (Ed.)
    While much of network design focuses mostly on cost (number or weight of edges), node degrees have also played an important role. They have traditionally either appeared as an objective, to minimize the maximum degree (e.g., the Minimum Degree Spanning Tree problem), or as constraints that might be violated to give bicriteria approximations (e.g., the Minimum Cost Degree Bounded Spanning Tree problem). We extend the study of degrees in network design in two ways. First, we introduce and study a new variant of the Survivable Network Design Problem where in addition to the traditional objective of minimizing the cost of the chosen edges, we add a constraint that the 𝓁_p-norm of the node degree vector is bounded by an input parameter. This interpolates between the classical settings of maximum degree (the 𝓁_∞-norm) and the number of edges (the 𝓁₁-degree), and has natural applications in distributed systems and VLSI design. We give a constant bicriteria approximation in both measures using convex programming. Second, we provide a polylogarithmic bicriteria approximation for the Degree Bounded Group Steiner problem on bounded treewidth graphs, solving an open problem from [Guy Kortsarz and Zeev Nutov, 2022] and [X. Guo et al., 2022]. 
    more » « less
  4. Belkin, Mikhail ; Kpotufe, Samor (Ed.)
    We present an $e^{O(p)} (\log \ell) / (\log \log \ell)$-approximation algorithm for socially fair clustering with the $\ell_p$-objective. In this problem, we are given a set of points in a metric space. Each point belongs to one (or several) of $\ell$ groups. The goal is to find a $k$-medians, $k$-means, or, more generally, $\ell_p$-clustering that is simultaneously good for all of the groups. More precisely, we need to find a set of $k$ centers $C$ so as to minimize the maximum over all groups $j$ of $\sum_{u \text{ in group } j} d(u, C)^p$. The socially fair clustering problem was independently proposed by Abbasi, Bhaskara, and Venkatasubramanian (2021) and Ghadiri, Samadi, and Vempala (2021). Our algorithm improves and generalizes their $O(\ell)$-approximation algorithms for the problem. The natural LP relaxation for the problem has an integrality gap of $\Omega(\ell)$. In order to obtain our result, we introduce a strengthened LP relaxation and show that it has an integrality gap of $\Theta((\log \ell) / (\log \log \ell))$ for a fixed p. Additionally, we present a bicriteria approximation algorithm, which generalizes the bicriteria approximation of Abbasi et al. (2021). 
    more » « less
  5. We study a problem of minimizing routing costs by jointly optimizing caching and routing decisions over an arbitrary network topology. We cast this as an equivalent caching gain maximization problem, and consider both source routing and hop-by-hop routing settings. The respective offline problems are NP-hard. Nevertheless, we show that there exist polynomial time approximation algorithms producing solutions within a constant approximation from the optimal. We also produce distributed, adaptive algorithms with the same approximation guarantees. We simulate our adaptive algorithms over a broad array of different topologies. Our algorithms reduce routing costs by several orders of magnitude compared to prior art, including algorithms optimizing caching under fixed routing. 
    more » « less