A comprehensive experimental investigation is performed to understand the damage sensing capabilities of thermoplastic intra-ply carbon/glass laminated composites embedded with Carbon Nanotubes (CNTs) under quasi-static interlaminar shear and mode-I fracture loading conditions. CNTs are dispersed in thermoplastic Elium® resin using a combination of ultrasonication and shear mixing processes. This resin mix is used in a vacuum infusion process to fabricate four different intra-ply laminated composites orientations; G-0-C-90 [Carbon fibers are in the longitudinal direction], G-90-C-0 [Glass fibers are in the longitudinal direction], G-45-C-45(R) [carbon and glass fibers are at +45°, and −45° from the longitudinal direction and form a repeating layup], and G-45-C-45(A) [carbon and glass fibers are at +45°, and −45°, but with alternating directions for each lamina in the layup]. Four-circumferential probes are utilized to obtain the piezo-resistance measurements associated with damage inside the composites under shear and mode-I loadings. In the shear experimentation, the G-45-C-45(A) orientation demonstrated the largest interlaminar shear strength, at 50% greater than the G-45-C-45(R) orientation. Both G-45-C-45(A) and G-45-C-45(R) had significantly larger shear strains compared to the G-90-C-0 and G-0-C-90 orientations. However, the best resolution in shear damage sensing was seen with the G-0-C-90 composites. In the mode-I fracture experiments, the greatest fracture initiation toughness is shown with the G-0-C-90 orientation, which is 80% greater than the G-90-C-0 orientation. Compared to all orientations, the G-0-C-90 orientation also provided the most sensitive electrical response.
An experimental study is preformed to investigate the in-situ damage sensing capabilities of intra-ply hybrid carbon/glass laminate and epoxy composites under quasi-static interlaminar shear loading. A three-dimensional electrical sensory network is generated inside the composites through embedded carbon nanotubes (CNTs) in an epoxy matrix along with the carbon fibers in the intra-ply hybrid laminates. CNTs are dispersed in the epoxy matrix using a combination of ultrasonication and shear mixing techniques. Four circumferential ring probes are used to examine the electrical response under interlaminar shear load. The effect of four different intra-ply orientations (((0–90)C, where carbon fibers are oriented along the loading direction), ((0–90)G, where glass fibers are oriented along the loading direction), ((45/−45, where glass and carbon fibers are oriented at 45o/−45oand the laminates are repeated), and ((45/−45)A, where glass and carbon fibers are oriented at 45o/−45oand the laminates are alternated)) on the shear constitutive behavior and the damage detection are discussed. Intra-ply orientations of (45/−45) and (45/−45)Ashowed higher interlaminar shear strength and shear strain at break compared to (0/90)Cand (0/90)Gorientations. Out of all four orientations, (45/−45)Aprovided a better resolution of electrical response for damage sensing applications.
more » « less- PAR ID:
- 10547327
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Journal of Composite Materials
- Volume:
- 56
- Issue:
- 2
- ISSN:
- 0021-9983
- Format(s):
- Medium: X Size: p. 213-222
- Size(s):
- p. 213-222
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Novel conductive jute/epoxy laminated composites were fabricated by embedding carbon nanotubes (CNTs) in the matrix and flocking short carbon fibers between the laminates. A three‐dimensional electrical conductive network was generated inside the composites and the electrical resistivity values were measured using a four circumferential probe measurement system. A parametric study was performed to investigate the effect of three different weight percentages of CNTs (0%, 0.025% and 0.1%), two different carbon fiber lengths (150µm and 350µm), four different carbon fiber flock densities (500, 1000, 1500 and 2000 fibers/mm2) and two different laminates' orientations ((0‐0‐0‐0)Tand (0‐90‐0‐90)T) on the resistivity values of the composites. Composites with the lowest resistivity value of 0.019 Ohms‐m was achieved for 0.1 wt.% of CNTs and 350µm with flock density of 2000 fibers/mm2for ((0‐0‐0‐0)Tlaminate orientation. The increase in flock length from 150µm to 350µm significantly decreased the resistivity by several orders because 350µm generated better conductive network with neighbouring carbon fibers as well as with CNTs. The flock density of carbon fibers has a dominant effect on 150µm long fibers compared to 350µm when the flock density increased from 1000 fibers/mm2to 1500 fibers/mm2. Variation of both CNTs weight percentage and laminate orientation did not have significant effect on change in resistivity. The electrical measurement investigation of these novel conductive natural fiber composites will have applications in in‐situ damage sensing and structural health monitoring. POLYM. COMPOS., 40:E1189–E1198, 2019. © 2018 Society of Plastics Engineers
-
An experimental study was performed to investigate damage sensing and fracture toughness of multifunctional conductive glass fiber composites under dynamic mode-I fracture loading. Carbon nanotubes (CNTs) were dispersed within the epoxy matrix using a shear mixing and sonicating process. An electrostatic wet flocking process was used to reinforce milled short PAN-based carbon fibers onto each of the layers of glass fiber fabric along the thickness direction in the composites. These layers of flocked fabric were stacked, and a vacuum infusion process was employed to fabricate the composites. The parametric study consisted of two carbon fiber lengths (80 μm and 150 μm) and two fiber densities (1000 fibers/mm2and 2000 fibers/mm2) and was performed to investigate the damage sensing capabilities of a three-dimensional conductive network generated through CNTs and carbon fibers. A double cantilever beam (DCB) configuration was considered, and a modified Hopkinson pressure bar setup along with a high-speed camera was used to investigate dynamic fracture toughness of the composites. The piezo-resistance response of the composites during dynamic fracture was measured using a modified system of four probes. For comparison, composites were also characterized for fracture toughness and piezo-resistance under quasi-static fracture loading conditions. The addition of short, milled PAN-based carbon fibers significantly increased the fracture toughness of glass/epoxy composites. The piezo-resistance response of the composites was easily correlated with instances of sudden crack growth during static fracture loading.
-
Previous studies have provided evidence that reinforcement of epoxy adhesives with nanostructures such as carbon nanofibers (CNFs) produces higher strength bonded joints between carbon fiber reinforced polymer (CFRP) laminates and shifts bond-line failure modes from the adhesive into the laminate. Despite this, there has been no research dedicated to applying reinforced adhesives to the bonding of nano-reinforced CFRP such as CNF z-threaded carbon fiber reinforced polymer (ZT-CFRP) laminates, which have been proven to exhibit increased interlaminar shear strength, mode-I delamination toughness, and compressive strength over traditional CFRP. This study examined the effectiveness of using CNF reinforced epoxy adhesives for unidirectional ZT-CFRP laminate bonding through single-lap shear tests using the ASTM D5868-01 standard. Unidirectional CFRP laminate samples bonded with both epoxy adhesive and CNF reinforced epoxy adhesive were also tested for comparison. It was found that the average shear strength observed for ZT-CFRP samples bonded with CNF reinforced epoxy adhesive was approximately 44% and 26 % higher than that of CFRP samples bonded with epoxy adhesive and CNF reinforced epoxy adhesive, respectively. Microscopic image analysis was performed to examine the mode of bond failure. The roles of nanomaterials in the fracture mechanism of the adhesives and the composite laminates are also discussed.more » « less
-
The interface characteristics of the matrix and fibers significantly influence the evolution of residual stress in composite materials. In this study, we provide a methodology for reducing the residual stress in laminated composites by modifying the thermomechanical properties at the fiber–matrix interface. A hydrothermal chemical growth method was used to grow Zinc Oxide nanowires on the carbon fibers. We then utilized a novel digital image correlation approach to evaluate strains and residual stresses, in situ, throughout the autoclave curing of composites. We find that interface modification results in the reduction of residual stress and an increase in laminate strength and stiffness. Upon growing ZnO NWs on the carbon fibers, the maximum in situ in-plane strain components were reduced by approximately 55% and 31%, respectively, while the corresponding maximum residual stresses were decreased by 50.8% and 49.33% for the cross-play laminate [0°/90°] layup in the x and y directions, respectively. For the [45°/-45°] angle ply layup in the x-direction, the strain was decreased by 27.3%, and the maximum residual stress was reduced by 41.5%, whereas in the y-direction, the strain was decreased by 166.3%, and the maximum residual stress was reduced by 17.8%. Furthermore, mechanical testing revealed that the tensile strength for the [45°/-45°] and [0°/90°] laminates increased by 130% and 20%, respectively, with the interface modification.more » « less