skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid metal additive/subtractive machine tools and applications
Additive manufacturing creates parts by depositing a preform, typically layer by layer. Subtractive manufacturing involves removing material from a preform to create parts. Hybrid machine tools combine both additive and subtractive processes in the same workspace. They can be used to create parts that meet functional tolerance and surface finish requirements, or to create features that are difficult to produce using additive or subtractive processes alone. This paper describes hybrid metal additive/subtractive machine tools. It covers design considerations, sensors and controls, process management, programming and software, and the impact on the design space. It also identifies future research challenges.  more » « less
Award ID(s):
2318705
PAR ID:
10547454
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
CIRP Annals
Volume:
73
Issue:
2
ISSN:
0007-8506
Page Range / eLocation ID:
615 to 638
Subject(s) / Keyword(s):
Hybrid Additive manufacturing Machine tool
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct digital manufacturing (DDM) is the creation of a physical part directly from a computer-aided design (CAD) model with minimal process planning and is typically applied to additive manufacturing (AM) processes to fabricate complex geometry. AM is preferred for DDM because of its minimal user input requirements; as a result, users can focus on exploiting other advantages of AM, such as the creation of intricate mechanisms that require no assembly after fabrication. Such assembly free mechanisms can be created using DDM during a single build process. In contrast, subtractive manufacturing (SM) enables the creation of higher strength parts that do not suffer from the material anisotropy inherent in AM. However, process planning for SM is more difficult than it is for AM due to geometric constraints imposed by the machining process; thus, the application of SM to the fabrication of assembly free mechanisms is challenging. This research describes a voxel-based computer-aided manufacturing (CAM) system that enables direct digital subtractive manufacturing (DDSM) of an assembly free mechanism. Process planning for SM involves voxel-by-voxel removal of material in the same way that an AM process consists of layer-by-layer addition of material. The voxelized CAM system minimizes user input by automatically generating toolpaths based on an analysis of accessible material to remove for a certain clearance in the mechanism's assembled state. The DDSM process is validated and compared to AM using case studies of the manufacture of two assembly free ball-in-socket mechanisms. 
    more » « less
  2. Additive manufacturing (AM) presents unique challenges to the nondestructive testing community, not least in that it requires inspection of parts with complex forms that are not possible using subtractive manufacturing. The drive to use AM for parts where design approaches include damage tolerance and retirement-for-cause with high quality and where safety criticality imposes new QA/QC requirements is growing. This article reviews the challenges faced to enable reliable inspection and characterization in metal powderbased AM processes, including issues due to geometric and microstructural features of interest, the limitation on existing and emerging NDT techniques, and remaining technology gaps. The article looks at inspection from powder to finished part, but focuses primarily on monitoring and characterization during the build. In-process, quantitative characterization and monitoring is anticipated to be transformational in advancing adoption of metal AM parts, including offering the potential for inprocess repair or early part rejection during part fabrication. 
    more » « less
  3. Additive Manufacturing (AM) is a novel process that enables the manufacturing of complex geometries through layer-by-layer deposition of material. AM processes provide a stark contrast to traditional, subtractive manufacturing processes, which has resulted in the emergence of design for additive manufacturing (DfAM) to capitalize on AM’s capabilities. In order to support the increasing use of AM in engineering, it is important to shift from the traditional design for manufacturing and assembly mindset, towards integrating DfAM. To facilitate this, DfAM must be included in the engineering design curriculum in a manner that has the highest impact. While previous research has systematically organized DfAM concepts into process capability-based (opportunistic) and limitation-based (restrictive) considerations, limited research has been conducted on the impact of teaching DfAM on the student’s design process. This study investigates this interaction by comparing two DfAM educational interventions conducted at different points in the academic semester. The two versions are compared by evaluating the students’ perceived utility, change in self-efficacy, and the use of DfAM concepts in design. The results show that introducing DfAM early in the semester when students have little previous experience in AM resulted in the largest gains in students perceiving utility in learning about DfAM concepts and DfAM self-efficacy gains. Further, we see that this increase relates to greater application of opportunistic DfAM concepts in student design ideas in a DfAM challenge. However, no difference was seen in the application of restrictive DfAM concepts between the two interventions. These results can be used to guide the design and implementation of DfAM education. 
    more » « less
  4. Abstract As an alternative to traditional photolithography, printing processes are widely explored for the patterning of customizable devices. However, to date, the majority of high‐resolution printing processes for functional nanomaterials are additive in nature. To complement additive printing, there is a need for subtractive processes, where the printed ink results in material removal, rather than addition. In this study, a new subtractive patterning approach that uses electrohydrodynamic‐jet (e‐jet) printing of acid‐based inks to etch nanoscale zinc oxide (ZnO) thin films deposited using atomic layer deposition (ALD) is introduced. By tuning the printing parameters, the depth and linewidth of the subtracted features can be tuned, with a minimum linewidth of 11 µm and a tunable channel depth with ≈5 nm resolution. Furthermore, by tuning the ink composition, the volatility and viscosity of the ink can be adjusted, resulting in variable spreading and dissolution dynamics at the solution/film interface. In the future, acid‐based subtractive patterning using e‐jet printing can be used for rapid prototyping or customizable manufacturing of functional devices on a range of substrates with nanoscale precision. 
    more » « less
  5. Carbon fiber reinforced polymer (CFRP) composites have been increasingly used to replace metal parts in many industries such as aerospace, marine, automotive, and sporting goods. The CFRP parts compared with their metallic counter parts have the advantages of lightweight, significantly higher tensile strength, stiffer, and corrosion resistant. On the other hand, compared with many metal parts, the CFRP parts have many well-known disadvantages including the lower toughness, lower through-thickness tensile and shear strengths, lower thermal conductivity, lower electrical conductivity, and lower operating temperature. These disadvantages have made the conversion from metal parts into CFRP parts challenging and costly to design, manufacture, and maintain. The use of nanoparticles in polymer has been studied in the recent two decades. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been dispersed in various thermoset and thermoplastic polymers and improved the mechanical, electrical, and thermal properties; however, the properties were not comparable to CFRP. Later, researchers tried to infuse CNTs or CNFs into either carbon fiber preforms [1] or glass fiber preforms [2] for improving the mechanical properties. But the results were marginal and with great uncertainty due to the challenges of nanoparticle dispersion, filtering, and alignment while being infused through the fiber preform. The glass fiber preform experiments ended with relatively more consistent improvement than the carbon fiber preform experiments since that the glass fiber preform has significantly larger pores than the carbon fiber preform' s. The small pore size presented a great challenge for infusing millions of unaligned long CNTs or CNFs through the carbon fiber preform without being filtered. To infuse long CNFs or CNTs through the carbon fiber preform and achieve reliable improvements, especially for 55% or higher carbon fiber volume fraction with increasingly tighter pores, an innovative plan for the processing and nano-reinforcing strategy is necessary. The z-threading strategy [3, 4, 5] has been reported to have consistent experimental successes in achieving the statistically meaningful improvement in multifunctional properties. The manufacturing steps of the CNF z-threaded CFRP (ZT-CFRP) are: (1) disperse the CNFs in a resin, (2) use a strong electrical field to align the CNFs in either the B-stage epoxy film or a CNF/resin impregnated sponge layer, whereas the CNFs are aligned in the through-thickness direction of the film or sponge layer. (3) place the resin film or sponge layer on a preheated dry carbon fiber fabric and press the resin film into the hot carbon fabric and allow the resin flow to carry the well-aligned CNFs to thread through the pores in the carbon fabric. (4) cool down the resin saturated and CNF z-threaded carbon fiber fabric to obtain the ZT-CFRP prepreg. (5) use the ZT-CFRP prepreg to make the ZT-CFRP laminate. Compared with the traditional CFRP, the ZT-CFRP laminates were reported of having improvement in the Mode-I delamination toughness, interlaminar shear strength, longitudinal compressive strength, through-thickness electrical conductivity, through-thickness thermal conductivity, and can reach the carbon fiber volume fraction of 55-80%. It is an effective approach to achieve a multifunctional CFRP for potentially expanding CFRP's applications. 
    more » « less