Soft robots have revolutionized machine interactions with humans and the environment to enable safe operations. The fixed morphology of these soft robots dictates their mechanical performance, including strength and stiffness, which limits their task range and applications. Proposed here are modular, reconfigurable soft robots with the capabilities of changing their morphology and adjusting their stiffness to perform versatile object handling and planar or spatial operational tasks. The reconfiguration and tunable interconnectivity between the elemental soft, pneumatically driven actuation units is made possible through integrated permanent magnets with coils. The proposed concept of attaching/detaching actuators enables these robots to be easily rearranged in various configurations to change the morphology of the system. While the potential for these actuators allows for arbitrary reconfiguration through parallel or serial connection on their four sides, we demonstrate here a configuration called ManusBot. ManusBot is a hand-like structure with digits and palm capable of individual actuation. The capabilities of this system are demonstrated through specific examples of stiffness modulation, variable payload capacity, and structure forming for enhanced and versatile object manipulation and operations. The proposed modular, soft robotic system with interconnecting capabilities significantly expands the versatility of operational tasks as well as the adaptability of handling objects of various shapes, sizes, and weights using a single system.
This content will become publicly available on April 14, 2025
- Award ID(s):
- 2133027
- PAR ID:
- 10547463
- Publisher / Repository:
- IEEE International Conference on Soft Robotics (RoboSoft)
- Date Published:
- ISBN:
- 979-8-3503-8181-8
- Page Range / eLocation ID:
- 366 to 373
- Format(s):
- Medium: X
- Location:
- San Diego, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Inflated continuum robots are promising for a variety of navigation tasks, but controlling their motion with a small number of actuators is challenging. These inflated beam robots tend to buckle under compressive loads, producing extremely tight local curvature at difficult-to-control buckle point locations. In this paper, we present an inflated beam robot that uses distributed stiffness changing sections enabled by positive pressure layer jamming to control or prevent buckling. Passive valves are actuated by an electromagnet carried by an electromechanical device that travels inside the main inflated beam robot body. The valves themselves require no external connections or wiring, allowing the distributed stiffness control to be scaled to long beam lengths. Multiple layer jamming elements are stiffened simultaneously to achieve global stiffening, allowing the robot to support greater cantilevered loads and longer unsupported lengths. Local stiffening, achieved by leaving certain layer jamming elements unstiffened, allows the robot to produce "virtual joints" that dynamically change the robot kinematics. Implementing these stiffening strategies is compatible with growth through tip eversion and tendon steering, and enables a number of new capabilities for inflated beam robots and tip-everting robots.more » « less
-
Simulating soft robots in cluttered environments remains an open problem due to the challenge of capturing complex dynamics and interactions with the environment. Fur- thermore, fast simulation is desired for quickly exploring robot behaviors in the context of motion planning. In this paper, we examine a particular class of inflated-beam soft growing robots called “vine robots,” and present a dynamics simulator that captures general behaviors, handles robot-object interactions, and runs faster than real time. The simulator framework uses a simplified multi-link, rigid-body model with contact constraints. To bridge the sim-to-real gap, we develop methods for fitting model parameters based on video data of a robot in motion and in contact with an environment. We provide examples of simulations, including several with fit parameters, to show the qualitative and quantitative agreement between simulated and real behaviors. Our work demonstrates the capabilities of this high-speed dynamics simulator and its potential for use in the control of soft robots.more » « less
-
Materials capable of dramatically changing their stiffness along specific directions in response to an external stimulus can enable the design of novel robots that can quickly switch between soft/highly–deformable and rigid/load–bearing states. While the jamming transition in discrete media has recently been demonstrated to be a powerful mechanism to achieve such variable stiffness, the lack of numerical tools capable of predicting the mechanical response of jammed media subjected to arbitrary loading conditions has limited the advancement of jamming-based robots. To overcome this limitation, we introduce a 3D finite–element-based numerical tool that predicts the mechanical response of pressurized, infinitely–extending discrete media subjected to arbitrary loading conditions. We demonstrate the capabilities of our numerical tool by investigating the response of periodic laminar and fibrous media subjected to various types of loadings. We expect this work to foster further numerical studies on jamming–based soft robots and structures by facilitating their design, as well as providing a foundation for combining various types of jamming media to create a new generation of tunable composites.more » « less
-
Despite tremendous progress in the development of untethered soft robots in recent years, existing systems lack the mobility, model‐based control, and motion planning capabilities of their piecewise rigid counterparts. As in conventional robotic systems, the development of versatile locomotion of soft robots is aided by the integration of hardware design and control with modeling tools that account for their unique mechanics and environmental interactions. Here, a framework for physics‐based modeling, motion planning, and control of a fully untethered swimming soft robot is introduced. This framework enables offline co‐design in the simulation of robot parameters and gaits to produce effective open‐loop behaviors and enables closed‐loop planning over motion primitives for feedback control of a frog‐inspired soft robot testbed. This pipeline uses a discrete elastic rods (DERs) physics engine that discretizes the soft robot as many stretchable and bendable rods. On hardware, an untethered aquatic soft robot that performs frog‐like rowing behaviors is engineered. Hardware validation verifies that the simulation has sufficient accuracy to find the best candidates for sets of parameters offline. The simulator is then used to generate a trajectory library of the robot's motion in simulation that is used in real‐time closed‐loop path following experiments on hardware.