Quadrotors can provide services such as infrastructure inspection and search-and-rescue, which require operating autonomously in cluttered environments. Autonomy is typically achieved with receding-horizon planning, where a short plan is executed while a new one is computed, because sensors receive limited information at any time. To ensure safety and prevent robot loss, plans must be verified as collision free despite uncertainty (e.g, tracking error). Existing spline-based planners dilate obstacles uniformly to compensate for uncertainty, which can be conservative. On the other hand, reachability-based planners can include trajectory-dependent uncertainty as a function of the planned trajectory. This work applies Reachability-based Trajectory Design (RTD) to plan quadrotor trajectories that are safe despite trajectory-dependent tracking error. This is achieved by using zonotopes in a novel way for online planning. Simulations show aggressive flight up to 5 m/s with zero crashes in 500 cluttered, randomized environments.
To operate with limited sensor horizons in unpredictable environments, autonomous robots use a receding-horizon strategy to plan trajectories, wherein they execute a short plan while creating the next plan. However, creating safe, dynamically feasible trajectories in real time is challenging, and planners must ensure persistent feasibility, meaning a new trajectory is always available before the previous one has finished executing. Existing approaches make a tradeoff between model complexity and planning speed, which can require sacrificing guarantees of safety and dynamic feasibility. This work presents the Reachability-based Trajectory Design (RTD) method for trajectory planning. RTD begins with an offline forward reachable set (FRS) computation of a robot’s motion when tracking parameterized trajectories; the FRS provably bounds tracking error. At runtime, the FRS is used to map obstacles to parameterized trajectories, allowing RTD to select a safe trajectory at every planning iteration. RTD prescribes an obstacle representation to ensure that obstacle constraints can be created and evaluated in real time while maintaining safety. Persistent feasibility is achieved by prescribing a minimum sensor horizon and a minimum duration for the planned trajectories. A system decomposition approach is used to improve the tractability of computing the FRS, allowing RTD to create more complex plans at runtime. RTD is compared in simulation with rapidly-exploring random trees and nonlinear model-predictive control. RTD is also demonstrated in randomly crafted environments on two hardware platforms: a differential-drive Segway and a car-like Rover. The proposed method is safe and persistently feasible across thousands of simulations and dozens of real-world hardware demos.
more » « less- PAR ID:
- 10547591
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- The International Journal of Robotics Research
- Volume:
- 39
- Issue:
- 12
- ISSN:
- 0278-3649
- Format(s):
- Medium: X Size: p. 1419-1469
- Size(s):
- p. 1419-1469
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)
Abstract -
This paper describes a hierarchical solution consisting of a multi-phase planner and a low-level safe controller to jointly solve the safe navigation problem in crowded, dynamic, and uncertain environments. The planner employs dynamic gap analysis and trajectory optimization to achieve collision avoidance with respect to the predicted trajectories of dynamic agents within the sensing and planning horizon and with robustness to agent uncertainty. To address uncertainty over the planning horizon and real-time safety, a fast reactive safe set algorithm (SSA) is adopted, which monitors and modifies the unsafe control during trajectory tracking. Compared to other existing methods, our approach offers theoretical guarantees of safety and achieves collision-free navigation with higher probability in uncertain environments, as demonstrated in scenarios with 20 and 50 dynamic agents.more » « less
-
We propose a hierarchical learning architecture for predictive control in unknown environments. We consider a constrained nonlinear dynamical system and assume the availability of state-input trajectories solving control tasks in different environments. A parameterized environment model generates state constraints specific to each task, which are satisfied by the stored trajectories. Our goal is to find a feasible trajectory for a new task in an unknown environment. From stored data, we learn strategies in the form of target sets in a reduced-order state space. These strategies are applied to the new task in real-time using a local forecast of the new environment, and the resulting output is used as a terminal region by a low-level receding horizon controller. We show how to i) design the target sets from past data and then ii) incorporate them into a model predictive control scheme with shifting horizon that ensures safety of the closed-loop system when performing the new task. We prove the feasibility of the resulting control policy, and verify the proposed method in a robotic path planning application.more » « less
-
null (Ed.)This paper reports on developing an integrated framework for safety-aware informative motion planning suitable for legged robots. The information-gathering planner takes a dense stochastic map of the environment into account, while safety constraints are enforced via Control Barrier Functions (CBFs). The planner is based on the Incrementally-exploring Information Gathering (IIG) algorithm and allows closed-loop kinodynamic node expansion using a Model Predictive Control (MPC) formalism. Robotic exploration and information gathering problems are inherently path-dependent problems. That is, the information collected along a path depends on the state and observation history. As such, motion planning solely based on a modular cost does not lead to suitable plans for exploration. We propose SAFE-IIG, an integrated informative motion planning algorithm that takes into account: 1) a robot’s perceptual field of view via a submodular information function computed over a stochastic map of the environment, 2) a robot’s dynamics and safety constraints via discrete-time CBFs and MPC for closedloop multi-horizon node expansions, and 3) an automatic stopping criterion via setting an information-theoretic planning horizon. The simulation results show that SAFE-IIG can plan a safe and dynamically feasible path while exploring a dense map.more » « less
-
Train routing is sensitive to delays that occur in the network. When a train is delayed, it is imperative that a new plan be found quickly, or else other trains may need to be stopped to ensure safety, potentially causing cascading delays. In this paper, we consider this class of multi-agent planning problems, which we call Multi-Agent Execution Delay Replanning. We show that these can be solved by reducing the problem to an any-start-time safe interval planning problem. When an agent has an any-start-time plan, it can react to a delay by simply looking up the precomputed plan for the delayed start time. We identify crucial real-world problem characteristics like the agent's speed, size, and safety envelope, and extend the any-start-time planning to account for them. Experimental results on real-world train networks show that any-start-time plans are compact and can be computed in reasonable time while enabling agents to instantly recover a safe plan.more » « less