skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting peak stresses in microstructured materials using convolutional encoder–decoder learning
This work presents a machine-learning approach to predict peak-stress clusters in heterogeneous polycrystalline materials. Prior work on using machine learning in the context of mechanics has largely focused on predicting the effective response and overall structure of stress fields. However, their ability to predict peak – which are of critical importance to failure – is unexplored, because the peak-stress clusters occupy a small spatial volume relative to the entire domain, and hence require computationally expensive training. This work develops a deep-learning-based convolutional encoder–decoder method that focuses on predicting peak-stress clusters, specifically on the size and other characteristics of the clusters in the framework of heterogeneous linear elasticity. This method is based on convolutional filters that model local spatial relations between microstructures and stress fields using spatially weighted averaging operations. The model is first trained against linear elastic calculations of stress under applied macroscopic strain in synthetically generated microstructures, which serves as the ground truth. The trained model is then applied to predict the stress field given a (synthetically generated) microstructure and then to detect peak-stress clusters within the predicted stress field. The accuracy of the peak-stress predictions is analyzed using the cosine similarity metric and by comparing the geometric characteristics of the peak-stress clusters against the ground-truth calculations. It is observed that the model is able to learn and predict the geometric details of the peak-stress clusters and, in particular, performed better for higher (normalized) values of the peak stress as compared to lower values of the peak stress. These comparisons showed that the proposed method is well-suited to predict the characteristics of peak-stress clusters.  more » « less
Award ID(s):
1921857 1635407
PAR ID:
10547633
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Mathematics and Mechanics of Solids
Volume:
27
Issue:
7
ISSN:
1081-2865
Format(s):
Medium: X Size: p. 1336-1357
Size(s):
p. 1336-1357
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Finding the chemical composition and processing history from a microstructure morphology for heterogeneous materials is desired in many applications. While the simulation methods based on physical concepts such as the phase-field method can predict the spatio-temporal evolution of the materials’ microstructure, they are not efficient techniques for predicting processing and chemistry if a specific morphology is desired. In this study, we propose a framework based on a deep learning approach that enables us to predict the chemistry and processing history just by reading the morphological distribution of one element. As a case study, we used a dataset from spinodal decomposition simulation of Fe–Cr–Co alloy created by the phase-field method. The mixed dataset, which includes both images, i.e., the morphology of Fe distribution, and continuous data, i.e., the Fe minimum and maximum concentration in the microstructures, are used as input data, and the spinodal temperature and initial chemical composition are utilized as the output data to train the proposed deep neural network. The proposed convolutional layers were compared with pretrained EfficientNet convolutional layers as transfer learning in microstructure feature extraction. The results show that the trained shallow network is effective for chemistry prediction. However, accurate prediction of processing temperature requires more complex feature extraction from the morphology of the microstructure. We benchmarked the model predictive accuracy for real alloy systems with a Fe–Cr–Co transmission electron microscopy micrograph. The predicted chemistry and heat treatment temperature were in good agreement with the ground truth. 
    more » « less
  2. Predicting the behavior of nanomaterials under various conditions presents a significant challenge due to their complex microstructures. While high-fidelity modeling techniques, such as molecular dynamics (MD) simulations, are effective, they are also computationally demanding. Machine learning (ML) models have opened new avenues for the rapid exploration of design spaces. In this work, we developed a deep learning framework based on a conditional generative adversarial network (cGAN) to predict the evolution of grain boundary (GB) networks in nanocrystalline materials under mechanical loads, incorporating both morphological and atomic details. We conducted MD simulations on nanocrystalline tungsten and used the resulting ground-truth data to train our cGAN model. We assessed the performance of our cGAN model by comparing it to a Convolutional Autoencoder (ConvAE) model and examining the impact of changes in geometric morphology and loading conditions on the model's performance. Our cGAN model demonstrated high accuracy in predicting GB network evolution under a variety of conditions. This developed framework shows potential for predicting various materials' behaviors across a wide range of nanomaterials. 
    more » « less
  3. Predicting the future trajectories of multiple interacting pedestrians within a scene has increasingly gained importance in various fields, e.g., autonomous driving, human–robot interaction, and so on. The complexity of this problem is heightened due to the social dynamics among different pedestrians and their heterogeneous implicit preferences. In this paper, we present Information Maximizing Spatial-Temporal Graph Convolutional Attention Network (InfoSTGCAN), which takes into account both pedestrian interactions and heterogeneous behavior choice modeling. To effectively capture the complex interactions among pedestrians, we integrate spatial-temporal graph convolution and spatial-temporal graph attention. For grasping the heterogeneity in pedestrians’ behavior choices, our model goes a step further by learning to predict an individual-level latent code for each pedestrian. Each latent code represents a distinct pattern of movement choice. Finally, based on the observed historical trajectory and the learned latent code, the proposed method is trained to cover the ground-truth future trajectory of this pedestrian with a bi-variate Gaussian distribution. We evaluate the proposed method through a comprehensive list of experiments and demonstrate that our method outperforms all baseline methods on the commonly used metrics, Average Displacement Error and Final Displacement Error. Notably, visualizations of the generated trajectories reveal our method’s capacity to handle different scenarios. 
    more » « less
  4. Serendipity is a notion that means an unexpected but valuable discovery. Due to its elusive and subjective nature, serendipity is difficult to study even with today's advances in machine learning and deep learning techniques. Both ground truth data collecting and model developing are the open research questions. This paper addresses both the data and the model challenges for identifying serendipity in recommender systems. For the ground truth data collecting, it proposes a new and scalable approach by using both user generated reviews and a crowd sourcing method. The result is a large-scale ground truth data on serendipity. For model developing, it designed a self-enhanced module to learn the fine-grained facets of serendipity in order to mitigate the inherent data sparsity problem in any serendipity ground truth dataset. The self-enhanced module is general enough to be applied with many base deep learning models for serendipity. A series of experiments have been conducted. As the result, a base deep learning model trained on our collected ground truth data, as well as with the help of the self-enhanced module, outperforms the state-of-the-art baseline models in predicting serendipity. 
    more » « less
  5. null (Ed.)
    Electromigration (EM) becomes a major concern for VLSI circuits as the technology advances in the nanometer regime. With Korhonen equations, EM assessment for VLSI circuits remains challenged due to the increasing integrated density. VLSI multisegment interconnect trees can be naturally viewed as graphs. Based on this observation, we propose a new graph convolution network (GCN) model, which is called {\it EMGraph} considering both node and edge embedding features, to estimate the transient EM stress of interconnect trees. Compared with recently proposed generative adversarial network (GAN) based stress image-generation method, EMGraph model can learn more transferable knowledge to predict stress distributions on new graphs without retraining via inductive learning. Trained on the large dataset, the model shows less than 1.5% averaged error compared to the ground truth results and is orders of magnitude faster than both COMSOL and state-of-the-art method. It also achieves smaller model size, 4X accuracy and 14X speedup over the GAN-based method. 
    more » « less