Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nonlinear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here we improve the interpretability of tree-based models through three main contributions. (1) A polynomial time algorithm to compute optimal explanations based on game theory. (2) A new type of explanation that directly measures local feature interaction effects. (3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to (1) identify high-magnitude but low-frequency nonlinear mortality risk factors in the US population, (2) highlight distinct population subgroups with shared risk characteristics, (3) identify nonlinear interaction effects among risk factors for chronic kidney disease and (4) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model’s performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. 
                        more » 
                        « less   
                    
                            
                            Concept-Centric Transformers: Enhancing Model Interpretability through Object-Centric Concept Learning within a Shared Global Workspace
                        
                    
    
            Many interpretable AI approaches have been proposed to provide plausible explanations for a model’s decision-making. However, configuring an explainable model that effectively communicates among computational modules has received less attention. A recently proposed shared global workspace theory showed that networks of distributed modules can benefit from sharing information with a bottle-necked memory because the communication constraints encourage specialization, compositionality, and synchronization among the modules. Inspired by this, we propose Concept-Centric Transformers, a simple yet effective configuration of the shared global workspace for interpretability, consisting of: i) an object-centric-based memory module for extracting semantic concepts from input features, ii) a cross-attention mechanism between the learned concept and input embeddings, and iii) standard classification and explanation losses to allow human analysts to directly assess an explanation for the model’s classification reasoning. We test our approach against other existing concept-based methods on classification tasks for various datasets, including CIFAR100, CUB-200-2011, and ImageNet, and we show that our model achieves better classification accuracy than all baselines across all problems but also generates more consistent concept-based explanations of classification output. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2223839
- PAR ID:
- 10547690
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-1892-0
- Page Range / eLocation ID:
- 4868–4879
- Format(s):
- Medium: X
- Location:
- Waikoloa, HI, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Hitzler, Pascal; Sarker, Md Kamruzzaman (Ed.)Understanding complex machine learning models such as deep neural networks with explanations is crucial in various applications. Many explanations stem from the model perspective, and may not necessarily effectively communicate why the model is making its predictions at the right level of abstraction. For example, providing importance weights to individual pixels in an image can only express which parts of that particular image are important to the model, but humans may prefer an explanation which explains the prediction by concept-based thinking. In this work, we review the emerging area of concept based explanations. We start by introducing concept explanations including the class of Concept Activation Vectors (CAV) which characterize concepts using vectors in appropriate spaces of neural activations, and discuss different properties of useful concepts, and approaches to measure the usefulness of concept vectors. We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats. Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.more » « less
- 
            When trained on biased datasets, Deep Neural Networks (DNNs) often make predictions based on attributes derived from features spuriously correlated with the target labels. This is especially problematic if these irrelevant features are easier for the model to learn than the truly relevant ones. Many existing approaches, called debiasing methods, have been proposed to address this issue, but they often require predefined bias labels and entail significantly increased computational complexity by incorporating extra auxiliary models. Instead, we provide an orthogonal perspective from the existing approaches, inspired by cognitive science, specifically Global Workspace Theory (GWT). Our method, Debiasing Global Workspace (DGW), is a novel debiasing framework that consists of specialized modules and a shared workspace, allowing for increased modularity and improved debiasing performance. Additionally, DGW enhances the transparency of decision-making processes by visualizing which features of the inputs the model focuses on during training and inference through attention masks. We begin by proposing an instantiation of GWT for the debiasing method. We then outline the implementation of each component within DGW. At the end, we validate our method across various biased datasets, proving its effectiveness in mitigating biases and improving model performance.more » « less
- 
            With the increasing popularity of Graph Neural Networks (GNNs) for predictive tasks on graph structured data, research on their explainability is becoming more critical and achieving significant progress. Although many methods are proposed to explain the predictions of GNNs, their focus is mainly on “how to generate explanations.” However, other important research questions like “whether the GNN explanations are inaccurate,” “what if the explanations are inaccurate,” and “how to adjust the model to generate more accurate explanations” have gained little attention. Our previous GNN Explanation Supervision (GNES) framework demonstrated effectiveness on improving the reasonability of the local explanation while still keep or even improve the backbone GNNs model performance. In many applications instead of per sample explanations, we need to find global explanations which are reasonable and faithful to the domain data. Simply learning to explain GNNs locally is not an optimal solution to a global understanding of the model. To improve the explainability power of the GNES framework, we propose the Global GNN Explanation Supervision (GGNES) technique which uses a basic trained GNN and a global extension of the loss function used in the GNES framework. This GNN creates local explanations which are fed to a Global Logic-based GNN Explainer, an existing technique that can learn the global Explanation in terms of a logic formula. These two frameworks are then trained iteratively to generate reasonable global explanations. Extensive experiments demonstrate the effectiveness of the proposed model on improving the global explanations while keeping the performance similar or even increase the model prediction power.more » « less
- 
            The continued growth in the processing power of FPGAs coupled with high bandwidth memories (HBM), makes systems like the Xilinx U280 credible platforms for linear solvers which often dominate the run time of scientific and engineering applications. In this paper, we present Callipepla, an accelerator for a preconditioned conjugate gradient linear solver (CG). FPGA acceleration of CG faces three challenges: (1) how to support an arbitrary problem and terminate acceleration processing on the fly, (2) how to coordinate long-vector data flow among processing modules, and (3) how to save off-chip memory bandwidth and maintain double (FP64) precision accuracy. To tackle the three challenges, we present (1) a stream-centric instruction set for efficient streaming processing and control, (2) vector streaming reuse (VSR) and decentralized vector flow scheduling to coordinate vector data flow among modules and further reduce off-chip memory access latency with a double memory channel design, and (3) a mixed precision scheme to save bandwidth yet still achieve effective double precision quality solutions. To the best of our knowledge, this is the first work to introduce the concept of VSR for data reusing between on-chip modules to reduce unnecessary off-chip accesses and enable modules working in parallel for FPGA accelerators. We prototype the accelerator on a Xilinx U280 HBM FPGA. Our evaluation shows that compared to the Xilinx HPC product, the XcgSolver, Callipepla achieves a speedup of 3.94×, 3.36× higher throughput, and 2.94× better energy efficiency. Compared to an NVIDIA A100 GPU which has 4× the memory bandwidth of Callipepla, we still achieve 77% of its throughput with 3.34× higher energy efficiency. The code is available at https://github.com/UCLA-VAST/Callipepla.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    