Abstract We present a comprehensive analysis of the chemical composition of the Jupiter-family comet and potential spacecraft target 46P/Wirtanen, in the near-IR wavelength range. We used iSHELL at the NASA Infrared Telescope Facility to observe the comet on 11 pre-, near-, and postperihelion dates in 2018 December and 2019 January and February during its historic apparition. We report rotational temperatures, production rates, and mixing ratios with respect to H2O and C2H6or 3σupper limits of the primary volatiles H2O, HCN, CH4, C2H6, CH3OH, H2CO, NH3, CO, C2H2, and HC3N. We also discuss the spatial outgassing of the primary volatiles, to understand their sources and the spatial associations between them. The spatial profiles of H2O in 46P/Wirtanen suggest the presence of extended H2O outgassing sources in the coma, similar to the EPOXI target comet 103P/Hartley 2. 46P/Wirtanen is among the few known hyperactive comets, and we note that its composition and outgassing behavior are similar to those of other hyperactive comets in many ways. We note that the analyzed parent volatiles showed different variations (relative mixing ratios) during the apparition. We compared the chemical composition of 46P/Wirtanen with the mean abundances in Jupiter-family comets and the comet population as measured with ground-based near-IR facilities to date. The molecular abundances in 46P/Wirtanen suggest that although they were changing, the variations were small compared to the range in the comet population, with CH3OH showing notably more variation as compared to the other molecules.
more »
« less
Evidence for Surprising Heavy Nitrogen Isotopic Enrichment in Comet 46P/Wirtanen’s Hydrogen Cyanide
Abstract 46P/Wirtanen is a Jupiter-family comet, probably originating from the solar system’s Kuiper Belt, that now resides on a 5.4 yr elliptical orbit. During its 2018 apparition, comet 46P passed unusually close to the Earth (within 0.08 au), presenting an outstanding opportunity for close-up observations of its inner coma. Here we present observations of HCN, H13CN, and HC15N emission from 46P using the Atacama Compact Array. The data were analyzed using the SUBLIME non-LTE radiative transfer code to derive12C/13C and14N/15N ratios. The HCN/H13CN ratio is found to be consistent with a lack of significant13C fractionation, whereas the HCN/HC15N ratio of 68 ± 27 (using our most conservative 1σuncertainties), indicates a strong enhancement in15N compared with the solar and terrestrial values. The observed14N/15N ratio is also significantly lower than the values of ∼140 found in previous comets, implying a strong15N enrichment in 46P’s HCN. This indicates that the nitrogen in Jupiter-family comets could reach larger isotopic enrichments than previously thought, with implications for the diversity of14N/15N ratios imprinted into icy bodies at the birth of the solar system.
more »
« less
- Award ID(s):
- 2009253
- PAR ID:
- 10547698
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Planetary Science Journal
- Volume:
- 5
- Issue:
- 10
- ISSN:
- 2632-3338
- Format(s):
- Medium: X Size: Article No. 221
- Size(s):
- Article No. 221
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gas-phase molecules in cometary atmospheres (comae) originate primarily from (1) outgassing by the nucleus, (2) sublimation of icy grains in the near-nucleus coma, and (3) coma (photo)chemical processes. However, the majority of cometary gases observed at radio wavelengths have yet to be mapped, so their production/release mechanisms remain uncertain. Here we present observations of six molecular species toward comet 46P/Wirtanen, obtained using the Atacama Large Millimeter/submillimeter Array during the comet’s unusually close (∼0.1 au) approach to Earth in 2018 December. Interferometric maps of HCN, CH3OH, CH3CN, H2CO, CS, and HNC were obtained at an unprecedented sky-projected spatial resolution of up to 25 km, enabling the nucleus and coma sources of these molecules to be accurately quantified. The HCN, CH3OH, and CH3CN spatial distributions are consistent with production by direct outgassing from (or very close to) the nucleus, with a significant proportion of the observed CH3OH originating from sublimation of icy grains in the near-nucleus coma (at a scale lengthLp= 36 ± 7 km). On the other hand, H2CO, CS, and HNC originate primarily from distributed coma sources (withLpvalues in the range 550–16,000 km), the identities of which remain to be established. The HCN, CH3OH, and HNC abundances in 46P are consistent with the average values previously observed in comets, whereas the H2CO, CH3CN, and CS abundances are relatively low.more » « less
-
Abstract The precursors to larger, biologically relevant molecules are detected throughout interstellar space, but determining the presence and properties of these molecules during planet formation requires observations of protoplanetary disks at high angular resolution and sensitivity. Here, we present 0.″3 observations of HC 3 N, CH 3 CN, and c -C 3 H 2 in five protoplanetary disks observed as part of the Molecules with ALMA at Planet-forming Scales (MAPS) Large Program. We robustly detect all molecules in four of the disks (GM Aur, AS 209, HD 163296, and MWC 480) with tentative detections of c -C 3 H 2 and CH 3 CN in IM Lup. We observe a range of morphologies—central peaks, single or double rings—with no clear correlation in morphology between molecule or disk. Emission is generally compact and on scales comparable with the millimeter dust continuum. We perform both disk-integrated and radially resolved rotational diagram analysis to derive column densities and rotational temperatures. The latter reveals 5–10 times more column density in the inner 50–100 au of the disks when compared with the disk-integrated analysis. We demonstrate that CH 3 CN originates from lower relative heights in the disks when compared with HC 3 N, in some cases directly tracing the disk midplane. Finally, we find good agreement between the ratio of small to large nitriles in the outer disks and comets. Our results indicate that the protoplanetary disks studied here are host to significant reservoirs of large organic molecules, and that this planet- and comet-building material can be chemically similar to that in our own solar system. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.more » « less
-
null (Ed.)We present the results of millimetre-wave spectroscopic observations and spectral surveys of the following short-period comets: 21P/Giacobini-Zinner in September 2018, 41P/Tuttle-Giacobini-Kresák in April 2017, and 64P/Swift-Gehrels and 38P/Stephan-Oterma in December 2018, carried out with the Institut de RadioAstronomie Millimétrique (IRAM) 30-m radio telescope at wavelengths between 1 and 3 mm. Comet 21P was also observed in November 1998 with the IRAM 30-m, James Clerk Maxwell Telescope, and the Caltech submillimeter Observatory radio telescopes at wavelengths from 0.8 to 3 mm. The abundances of the following molecules have been determined in those comets: HCN, CH 3 OH, CS, H 2 CO, CH 3 CN, and H 2 S in comet 21P; HCN and CH 3 OH in 41P; HCN, CH 3 OH, and CS in 64P; and CH 3 OH in 38P. The last three comets, classified as carbon-chain typical from visible spectro-photometry, are relatively rich in methanol (3.5–5% relative to water). On the other hand, comet 21P, classified as carbon-chain depleted, shows abundances relative to water which are low for methanol (1.7%), very low for H 2 S (0.1%), and also relatively low for H 2 CO (0.16%) and CO (<2.5%). Observations of comet 21P do not show any change in activity and composition between the 1998 and 2018 perihelions. Sensitive upper limits on the abundances of other molecules such as CO, HNCO, HNC, or SO are also reported for these comets.more » « less
-
Abstract Two papers recently reported the detection of gaseous nickel and iron in the comae of over 20 comets from observations collected over two decades, including interstellar comet 2I/Borisov. To evaluate the state of the laboratory data in support of these identifications, we reanalyzed archived spectra of comet C/1996 B2 (Hyakutake), one of the nearest and brightest comets of the past century, using a combined experimental and computational approach. We developed a new, many-level fluorescence model that indicates that the fluorescence emissions of Fe I and Ni I vary greatly with heliocentric velocity. Combining this model with laboratory spectra of an Fe-Ni plasma, we identified 22 lines of Fe I and 14 lines of Ni I in the spectrum of Hyakutake. Using Haser models, we estimate the nickel and iron production rates as Q Ni = (2.6–4.1) × 10 22 s −1 and Q Fe = (0.4–2.8) × 10 23 s −1 . From derived column densities, the Ni/Fe abundance ratio log 10 [Ni/Fe] = −0.15 ± 0.07 deviates significantly from solar abundance ratios, and it is consistent with the ratios observed in solar system comets. Possible production and emission mechanisms are analyzed in the context of existing laboratory measurements. Based on the observed spatial distributions, excellent fluorescence model agreement, and Ni/Fe ratio, our findings support an origin consisting of a short-lived unknown parent followed by fluorescence emission. Our models suggest that the strong heliocentric velocity dependence of the fluorescence efficiencies can provide a meaningful test of the physical process responsible for the Fe I and Ni I emission.more » « less
An official website of the United States government
