Title: Is the Regime Shift in Gulf Stream Warm Core Rings Detected by Satellite Altimetry? An Inter‐Comparison of Eddy Identification and Tracking Products
Abstract Downstream of Cape Hatteras, the vigorously meandering Gulf Stream forms anticyclonic warm core rings (WCRs) that carry warm Gulf Stream and Sargasso Sea waters into the cooler, fresher Slope Sea, and forms cyclonic cold core rings (CCRs) that carry Slope Sea waters into the Sargasso Sea. The Northwest Atlantic shelf and open ocean off the U.S. East Coast have experienced dramatic changes in ocean circulation and water properties in recent years, with significant consequences for marine ecosystems and coastal communities. Some of these changes may be related to a reported regime shift in the number of WCRs formed annually, with a doubling of WCRs shed after 2000. Since the regime shift was detected using a regional eddy‐tracking product, primarily based on sea surface temperatures and relies on analyst skill, we examine three global eddy‐tracking products as an automated and potentially more objective way to detect changes in Gulf Stream rings. Currently, global products rely on altimeter‐measured sea surface height (SSH), with WCRs registering as sea surface highs and CCRs as lows. To identify eddies, these products use either SSH contours or a Lagrangian approach, with particles seeded in satellite‐based surface geostrophic velocity fields. This study confirms the three global products are not well suited for statistical analysis of Gulf Stream rings and suggests that automated WCR identification and tracking comes at the price of accurate identification and tracking. Furthermore, a shift to a higher energy state is detected in the Northwest Atlantic, which coincides with the regime shift in WCRs. more »« less
Abstract As the Gulf Stream separates from the coast, it sheds both Warm and Cold Core Rings between $$75^\circ$$ 75 ∘ and $$55^\circ \,\hbox {W}$$ 55 ∘ W . We present evidence that this ring formation behavior has been asymmetric over both interannual and seasonal time-scales. After a previously reported regime-shift in 2000, 15 more Warm Core Rings have been forming yearly compared to 1980–1999. In contrast, there have been no changes in the annual formation rate of the Cold Core Rings. This increase in Warm Core Ring production leads to an excess heat transfer of 0.10 PW to the Slope Sea, amounting to 7.7–12.4% of the total Gulf Stream heat transport, or 5.4–7.3% of the global oceanic heat budget at $$30^\circ \,\hbox {N}$$ 30 ∘ N . Seasonally, more Cold Core Rings are produced in the winter and spring and more Warm Core Rings are produced in the summer and fall leading to more summertime heat transfer to the north of the Stream. The seasonal cycle of relative ring formation numbers is strongly correlated (r = 0.82) with that of the difference in upper layer temperatures between the Sargasso and Slope seas. This quantification motivates future efforts to understand the recent increasing influence of the Gulf Stream on the circulation and ecosystem in the western North Atlantic.
{"Abstract":["This dataset consists of weekly trajectory information of Gulf Stream Warm Core Rings from 2000-2010. This work builds upon Silver et al. (2022a) ( https://doi.org/10.5281/zenodo.6436380) which contained Warm Core Ring trajectory information from 2011 to 2020. Combining the two datasets a total of 21 years of weekly Warm Core Ring trajectories can be obtained. An example of how to use such a dataset can be found in Silver et al. (2022b).<\/p>\n\nThe format of the dataset is similar to that of Silver et al. (2022a), and the following description is adapted from their dataset. This dataset is comprised of individual files containing each ring\u2019s weekly center location and its area for 374 WCRs present between January 1, 2000 and December 31, 2010. Each Warm Core Ring is identified by a unique alphanumeric code 'WEyyyymmddA', where 'WE' represents a Warm Eddy (as identified in the analysis charts); 'yyyymmdd' is the year, month and day of formation; and the last character 'A' represents the sequential sighting of the eddies in a particular year. Continuity of a ring which passes from one year to the next is maintained by the same character in the first sighting. For example, the first ring in 2002 having a trailing alphabet of 'F' indicates that five rings were carried over from 2001 which were still observed on January 1, 2002. Each ring has its own netCDF (.nc) filename following its alphanumeric code. Each file contains 4 variables, \u201cLon\u201d- the ring center\u2019s weekly longitude, \u201cLat\u201d- the ring center\u2019s weekly latitude, \u201cArea\u201d - the rings weekly size in km2<\/sup>, and \u201cDate\u201d in days - representing the days since Jan 01, 0000. <\/p>\n\nThe process of creating the WCR tracking dataset follows the same methodology of the previously generated WCR census (Gangopadhyay et al., 2019, 2020). The Jenifer Clark\u2019s Gulf Stream Charts used to create this dataset are 2-3 times a week from 2000-2010. Thus, we used approximately 1560 Charts for the 10 years of analysis. All of these charts were reanalyzed between 75° and 55°W using QGIS 2.18.16 (2016) and geo-referenced on a WGS84 coordinate system (Decker, 1986). <\/p>\n\n <\/p>\n\nSilver, A., Gangopadhyay, A, & Gawarkiewicz, G. (2022a). Warm Core Ring Trajectories in the Northwest Atlantic Slope Sea (2011-2020) (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6436380<\/p>\n\nSilver, A., Gangopadhyay, A., Gawarkiewicz, G., Andres, M., Flierl, G., & Clark, J. (2022b). Spatial Variability of Movement, Structure, and Formation of Warm Core Rings in the Northwest Atlantic Slope Sea. Journal of Geophysical Research: Oceans<\/em>, 127<\/em>(8), e2022JC018737. https://doi.org/10.1029/2022JC018737 <\/p>\n\nGangopadhyay, A., G. Gawarkiewicz, N. Etige, M. Monim and J. Clark, 2019. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream, Nature - Scientific Reports, https://doi.org/10.1038/s41598-019-48661-9. www.nature.com/articles/s41598-019-48661-9.<\/p>\n\nGangopadhyay, A., N. Etige, G. Gawarkiewicz, A. M. Silver, M. Monim and J. Clark, 2020. A Census of the Warm Core Rings of the Gulf Stream (1980-2017). Journal of Geophysical Research, Oceans, 125, e2019JC016033. https://doi.org/10.1029/2019JC016033.<\/p>\n\nQGIS Development Team. QGIS Geographic Information System (2016).<\/p>\n\nDecker, B. L. World Geodetic System 1984. World geodetic system 1984 (1986).<\/p>\n\n <\/p>"],"Other":["Funded by two NSF US grants OCE-1851242, OCE-212328","{"references": ["Silver, A., Gangopadhyay, A, & Gawarkiewicz, G. (2022). Warm Core Ring Trajectories in the Northwest Atlantic Slope Sea (2011-2020) (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6436380", "Silver, A., Gangopadhyay, A., Gawarkiewicz, G., Andres, M., Flierl, G., & Clark, J. (2022b). Spatial Variability of Movement, Structure, and Formation of Warm Core Rings in the Northwest Atlantic Slope Sea.\\u00a0Journal of Geophysical Research: Oceans,\\u00a0127(8), e2022JC018737.\\u00a0https://doi.org/10.1029/2022JC018737", "Gangopadhyay, A., G. Gawarkiewicz, N. Etige, M. Monim and J. Clark, 2019. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream, Nature - Scientific Reports, https://doi.org/10.1038/s41598-019-48661-9. www.nature.com/articles/s41598-019-48661-9.", "Gangopadhyay, A., N. Etige, G. Gawarkiewicz, A. M. Silver, M. Monim and J. Clark, 2020. A Census of the Warm Core Rings of the Gulf Stream (1980-2017). Journal of Geophysical Research, Oceans, 125, e2019JC016033. https://doi.org/10.1029/2019JC016033.", "QGIS Development Team. QGIS Geographic Information System (2016).", "Decker, B. L. World Geodetic System 1984. World geodetic system 1984 (1986)."]}"]}
Abstract We present observational evidence of a significant increase in Salinity Maximum intrusions in the Northeast US Shelf waters in the years following 2000. This increase is subsequent to and influenced by a previously observed regime-shift in the annual formation rate for Gulf Stream Warm Core Rings, which are relatively more saline than the shelf waters. Specifically, mid-depth salinity maximum intrusions, a cross-shelf exchange process, has shown a quadrupling in frequency on the shelf after the year 2000. This increase in intrusion frequency can be linked to a similar increase in Warm Core Ring occupancy footprint along the offshore edge of the shelf-break which has greatly increased the abundance of warm salty water within the Slope Sea. The increased ring occupancy footprint along the shelf follows from the near doubling in annual Warm Core Ring formation rate from the Gulf Stream. The increased occurrence of intrusions is likely driven by a combination of a larger number of rings in the slope sea and the northward shift in the GS position which may lead to more interactions between rings and the shelf topography. These results have significant implications for interpreting temporal changes in the shelf ecosystem from the standpoint of both larval recruitment as well as habitability for various important commercial species.
Abstract Gulf Stream Warm Core Rings (WCRs) have important influences on the New England Shelf and marine ecosystems. A 10‐year (2011–2020) WCR dataset that tracks weekly WCR locations and surface areas is used here to identify the rings' path and characterize their movement between 55 and 75°W. The WCR dataset reveals a very narrow band between 66 and 71°W along which rings travel almost due west along ∼39°N across isobaths – the “Ring Corridor.” Then, west of the corridor, the mean path turns southwestward, paralleling the shelfbreak. The average ring translation speed along the mean path is 5.9 cm s−1. Long‐lived rings (lifespan >150 days) tend to occupy the region west of the New England Seamount Chain (NESC) whereas short‐lived rings (lifespan <150 days) tend to be more broadly distributed. WCR vertical structures, analyzed using available Argo float profiles indicate that rings that are formed to the west of the NESC have shallower thermoclines than those formed to the east. This tendency may be due to different WCR formation processes that are observed to occur along different sections of the Gulf Stream. WCRs formed to the east of the NESC tend to form from a pinch‐off mechanism incorporating cores of Sargasso Sea water and a perimeter of Gulf Stream water. WCRs that form to the west of the NESC, form from a process called an aneurysm. WCRs formed through aneurysms comprise water mostly from the northern half of the Gulf Stream and are smaller than the classic pinch‐off rings.
Meyer-Gutbrod, Erin; Greene, Charles; Davies, Kimberley; Johns, David
(, Oceanography)
Ocean warming linked to anthropogenic climate change is impacting the ecology of marine species around the world. In 2010, the Gulf of Maine and Scotian Shelf regions of the Northwest Atlantic underwent an unprecedented regime shift. Forced by climate-driven changes in the Gulf Stream, warm slope waters entered the region and created a less favorable foraging environment for the endangered North Atlantic right whale population. By mid-decade, right whales had shifted their late spring/summer foraging grounds from the Gulf of Maine and the western Scotian Shelf to the Gulf of St. Lawrence. The population also began exhibiting unusually high mortality in 2017. Here, we report that climate-driven changes in ocean circulation have altered the foraging environment and habitat use of right whales, reducing the population’s calving rate and exposing it to greater mortality risks from ship strikes and fishing gear entanglement. The case of the North Atlantic right whale provides a cautionary tale for the management of protected species in a changing ocean.
Perez, E, Andres, M, and Gawarkiewicz, G. Is the Regime Shift in Gulf Stream Warm Core Rings Detected by Satellite Altimetry? An Inter‐Comparison of Eddy Identification and Tracking Products. Retrieved from https://par.nsf.gov/biblio/10547715. Journal of Geophysical Research: Oceans 129.10 Web. doi:10.1029/2023JC020761.
Perez, E, Andres, M, & Gawarkiewicz, G. Is the Regime Shift in Gulf Stream Warm Core Rings Detected by Satellite Altimetry? An Inter‐Comparison of Eddy Identification and Tracking Products. Journal of Geophysical Research: Oceans, 129 (10). Retrieved from https://par.nsf.gov/biblio/10547715. https://doi.org/10.1029/2023JC020761
Perez, E, Andres, M, and Gawarkiewicz, G.
"Is the Regime Shift in Gulf Stream Warm Core Rings Detected by Satellite Altimetry? An Inter‐Comparison of Eddy Identification and Tracking Products". Journal of Geophysical Research: Oceans 129 (10). Country unknown/Code not available: American Geophysical Union. https://doi.org/10.1029/2023JC020761.https://par.nsf.gov/biblio/10547715.
@article{osti_10547715,
place = {Country unknown/Code not available},
title = {Is the Regime Shift in Gulf Stream Warm Core Rings Detected by Satellite Altimetry? An Inter‐Comparison of Eddy Identification and Tracking Products},
url = {https://par.nsf.gov/biblio/10547715},
DOI = {10.1029/2023JC020761},
abstractNote = {Abstract Downstream of Cape Hatteras, the vigorously meandering Gulf Stream forms anticyclonic warm core rings (WCRs) that carry warm Gulf Stream and Sargasso Sea waters into the cooler, fresher Slope Sea, and forms cyclonic cold core rings (CCRs) that carry Slope Sea waters into the Sargasso Sea. The Northwest Atlantic shelf and open ocean off the U.S. East Coast have experienced dramatic changes in ocean circulation and water properties in recent years, with significant consequences for marine ecosystems and coastal communities. Some of these changes may be related to a reported regime shift in the number of WCRs formed annually, with a doubling of WCRs shed after 2000. Since the regime shift was detected using a regional eddy‐tracking product, primarily based on sea surface temperatures and relies on analyst skill, we examine three global eddy‐tracking products as an automated and potentially more objective way to detect changes in Gulf Stream rings. Currently, global products rely on altimeter‐measured sea surface height (SSH), with WCRs registering as sea surface highs and CCRs as lows. To identify eddies, these products use either SSH contours or a Lagrangian approach, with particles seeded in satellite‐based surface geostrophic velocity fields. This study confirms the three global products are not well suited for statistical analysis of Gulf Stream rings and suggests that automated WCR identification and tracking comes at the price of accurate identification and tracking. Furthermore, a shift to a higher energy state is detected in the Northwest Atlantic, which coincides with the regime shift in WCRs.},
journal = {Journal of Geophysical Research: Oceans},
volume = {129},
number = {10},
publisher = {American Geophysical Union},
author = {Perez, E and Andres, M and Gawarkiewicz, G},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.