skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Respiratory Dynamics of Thoracic and Abdominal Motion in Doppler Radar Measurements
A Doppler radar measurement of respiration is a well-known technique for assessment of respiratory rates and patterns. Torso respiratory motion is a result of thoracic and abdominal motion during normal breathing. These two contributions produce breathing patterns that are important to understand for assessing respiratory health and sleep disorders. Doppler radar systems often use an antenna beam that illuminates the whole torso, effectively combining the contributions from the two regions. This paper presents theory, simulation, and measurement results that analyze and validate thorax and abdomen motion contributions in Doppler radar respiratory measurement.  more » « less
Award ID(s):
2039089 1915738
PAR ID:
10547781
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISSN:
2164-2974
ISBN:
979-8-3503-4045-7
Page Range / eLocation ID:
39 to 41
Subject(s) / Keyword(s):
Respiratory motion IR camera markers respiration dynamics abdominal contribution thoracic contribution torso mapping
Format(s):
Medium: X
Location:
San Antonio, TX, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Doppler radar remote sensing of torso kinematics can provide an indirect measure of cardiopulmonary function. Motion at the human body surface due to heart and lung activity has been successfully used to characterize such measures as respiratory rate and depth, obstructive sleep apnea, and even the identity of an individual subject. For a sedentary subject, Doppler radar can track the periodic motion of the portion of the body moving as a result of the respiratory cycle as distinct from other extraneous motions that may occur, to provide a spatial temporal displacement pattern that can be combined with a mathematical model to indirectly assess quantities such as tidal volume, and paradoxical breathing. Furthermore, it has been demonstrated that even healthy respiratory function results in distinct motion patterns between individuals that vary as a function of relative time and depth measures over the body surface during the inhalation/exhalation cycle. Potentially, the biomechanics that results in different measurements between individuals can be further exploited to recognize pathology related to lung ventilation heterogeneity and other respiratory diagnostics. 
    more » « less
  2. The quality of human respiratory motion measurements made with Doppler radar depends on the amount of reflected signal received and the overall signal to noise ratio (SNR) of the measurement. The non-uniform characteristics of the human torso and its motion impact both the amount of signal returned toward the radar and its polarization. This study used a 2.4 GHz continuous wave Doppler radar system to compare the respiratory motion measurement performance for circular polarized antennas and linear polarized antennas, using mechanical respiratory phantom measurements at a nominal distance of one meter. While the different surfaces examined produced varied levels of signal at the original and other polarizations, the measurements using circular polarized antennas consistently provided less overall received signal and no significant improvement of SNR. 
    more » « less
  3. null (Ed.)
    Concurrent respiration monitoring of multiple subjects remains a challenge in microwave Doppler radar-based non-contact physiological sensing technology. Prior research using Independent component analysis with the JADE algorithm has been limited to the separation of respiratory signatures for normal breathing patterns. This paper investigates the feasibility of using the ICA-JADE algorithm with a 24-GHz phase comparison monopulse radar transceiver for separating respiratory signatures from combined mixtures of varied breathing patterns. Normal, fast, and slow breathing pattern variations likely to occur due to physiological activity, and emotional stress were used as a basis for assessing separation robustness. Experimental results showed efficacy for recognition of three different breathing patterns, and isolation of respiratory signatures with an accuracy of100% for normal breathing, 92% for slow breathing, and 83.78% for fast breathing using ICA-JADE. Breathing pattern variations were observed to affect the signal-to-noise ratio through multiple mechanisms, decreasing with an increase in the number of breathing cycles and associated motion artifacts. Additionally, for removing motion artifacts of fast breathing pattern empirical mode decomposition (EMD) is employed, and for slow breathing pattern, increasing the breathing cycles helps to achieve an accuracy of 89.2% and 94.5% respectively. 
    more » « less
  4. A static algorithm-based method is described here to differentiate between recoverable sedentary respiratory rate data extraneous motion segments measured using Doppler radar. Extraneous motion such as locomotion and fidgeting can cause drastic changes in dc offset and SNR of the received signal. Such extraneous data may not be excluded and can lead to an erroneous assessment of the respiration rate. In some cases, however, moderate distinct extraneous motion does not completely occlude the measurement of respiratory torso motion, allowing for respiration rate recovery. This work focuses on the accurate classification of data which is suitable for respiration rate analysis in the presence of locomotion and small extraneous movements. The proposed algorithm has been demonstrated to be accurate for classifying data with recoverable respiratory rates for 2 subjects and 3 types of fidgets with 99.4% accuracy on average. 
    more » « less
  5. One deadly aspect of COVID-19 is that those infected can often be contagious before exhibiting overt symptoms. While methods such as temperature checks and sinus swabs have aided with early detection, the former does not always provide a reliable indicator of COVID-19, and the latter is invasive and requires significant human and material resources to administer. This paper presents a non-invasive COVID-19 early screening system implementable with commercial off-the-shelf wireless communications devices. The system leverages the Doppler radar principle to monitor respiratory-related chest motion and identifies breathing rates that indicate COVID-19 infection. A prototype was developed from software-defined radios (SDRs) designed for 5G NR wireless communications and system performance was evaluated using a robotic mover simulating human breathing, and using actual breathing, resulting in a consistent respiratory rate accuracy better than one breath per minute, exceeding that used in common medical practice.Clinical Relevance-This establishes the potential efficacy of wireless communications based radar for recognizing respiratory disorders such as COVID-19. 
    more » « less